Base R graphics visualization module providing fast, blazing fast, and extremely customizable data visualization solutions using pure base R graphics. This module showcases the power and flexibility of base R plotting functions without external dependencies.
Details
This module implements the functionality requested in GitHub Issue #75, providing comprehensive base R graphics visualization capabilities. Base R graphics offer exceptional performance and unlimited customization potential for clinical research and data visualization.
Supported plot types:
Scatter plots: Visualize relationships between continuous variables
Line plots: Show trends and time series data
Histograms: Display distribution of continuous variables
Box plots: Compare distributions across groups
Bar plots: Visualize categorical data frequencies
Density plots: Smooth distribution visualization
Pairs plots: Multiple variable relationships
Matrix plots: Multiple series on same plot
Super classes
jmvcore::Analysis
-> ClinicoPath::basegraphicsBase
-> basegraphicsClass
Methods
Inherited methods
jmvcore::Analysis$.createImage()
jmvcore::Analysis$.createImages()
jmvcore::Analysis$.createPlotObject()
jmvcore::Analysis$.load()
jmvcore::Analysis$.render()
jmvcore::Analysis$.save()
jmvcore::Analysis$.savePart()
jmvcore::Analysis$.setCheckpoint()
jmvcore::Analysis$.setParent()
jmvcore::Analysis$.setReadDatasetHeaderSource()
jmvcore::Analysis$.setReadDatasetSource()
jmvcore::Analysis$.setResourcesPathSource()
jmvcore::Analysis$.setStatePathSource()
jmvcore::Analysis$addAddon()
jmvcore::Analysis$asProtoBuf()
jmvcore::Analysis$asSource()
jmvcore::Analysis$check()
jmvcore::Analysis$init()
jmvcore::Analysis$optionsChangedHandler()
jmvcore::Analysis$postInit()
jmvcore::Analysis$print()
jmvcore::Analysis$readDataset()
jmvcore::Analysis$run()
jmvcore::Analysis$serialize()
jmvcore::Analysis$setError()
jmvcore::Analysis$setStatus()
jmvcore::Analysis$translate()
ClinicoPath::basegraphicsBase$initialize()