Skip to contents

Bayesian confidence intervals (credible intervals) as alternative to frequentist confidence intervals. This analysis provides credible intervals using Beta-posterior distributions, Monte Carlo sampling, and various prior specifications for continuous and binary outcome data. Essential for Bayesian statistical inference in clinical research.

Usage

bayesianci(
  data,
  outcome,
  group_var,
  covariates,
  outcome_type = "continuous",
  credible_level = 0.95,
  additional_levels = "0.50,0.80,0.90",
  prior_type = "uniform",
  beta_alpha = 1,
  beta_beta = 1,
  normal_mean = 0,
  normal_sd = 1,
  gamma_shape = 1,
  gamma_rate = 1,
  mcmc_method = "analytical",
  mcmc_samples = 10000,
  burnin_samples = 2000,
  thinning = 1,
  chains = 3,
  posterior_summary = TRUE,
  convergence_diagnostics = TRUE,
  prior_posterior_comparison = TRUE,
  credible_vs_confidence = TRUE,
  hpd_intervals = TRUE,
  sensitivity_analysis = TRUE,
  robustness_check = TRUE,
  clinical_interpretation = TRUE,
  posterior_plots = TRUE,
  trace_plots = TRUE
)

Arguments

data

the data as a data frame

outcome

Outcome variable for credible interval estimation

group_var

Grouping variable for stratified analysis

covariates

Covariate variables for adjusted analysis

outcome_type

Type of outcome variable for appropriate modeling

credible_level

Level for Bayesian credible intervals

additional_levels

Comma-separated additional credible levels to compute

prior_type

Prior distribution specification for Bayesian analysis

beta_alpha

Alpha parameter for Beta prior distribution

beta_beta

Beta parameter for Beta prior distribution

normal_mean

Mean parameter for Normal prior distribution

normal_sd

Standard deviation for Normal prior distribution

gamma_shape

Shape parameter for Gamma prior distribution

gamma_rate

Rate parameter for Gamma prior distribution

mcmc_method

Method for posterior sampling and credible interval computation

mcmc_samples

Number of MCMC samples for posterior estimation

burnin_samples

Number of burn-in samples to discard

thinning

Thinning interval for MCMC chains

chains

Number of parallel MCMC chains

posterior_summary

Compute posterior mean, median, mode, and credible intervals

convergence_diagnostics

Assess MCMC convergence using R-hat and effective sample size

prior_posterior_comparison

Compare prior and posterior distributions

credible_vs_confidence

Compare Bayesian credible intervals with frequentist confidence intervals

hpd_intervals

Compute highest posterior density (HPD) credible intervals

sensitivity_analysis

Assess sensitivity to prior specification

robustness_check

Perform robustness checks with different prior specifications

clinical_interpretation

Provide clinical interpretation of credible intervals

posterior_plots

Create posterior distribution and credible interval visualizations

trace_plots

Generate MCMC trace plots for convergence assessment

Value

A results object containing:

results$instructionsa html
results$dataInfoa table
results$priorSpecificationa table
results$posteriorSummarya table
results$credibleIntervalsa table
results$hpdIntervalsa table
results$comparisonTablea table
results$convergenceDiagnosticsa table
results$sensitivityAnalysisa table
results$robustnessChecka table
results$clinicalInterpretationa table
results$posteriorPlotan image
results$priorPosteriorPlotan image
results$tracePlotsan image
results$credibleComparisonPlotan image
results$sensitivityPlotan image
results$methodExplanationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$dataInfo$asDF

as.data.frame(results$dataInfo)

Examples