Bayesian confidence intervals (credible intervals) as alternative to frequentist confidence intervals. This analysis provides credible intervals using Beta-posterior distributions, Monte Carlo sampling, and various prior specifications for continuous and binary outcome data. Essential for Bayesian statistical inference in clinical research.
Usage
bayesianci(
  data,
  outcome,
  group_var,
  covariates,
  outcome_type = "continuous",
  credible_level = 0.95,
  additional_levels = "0.50,0.80,0.90",
  prior_type = "uniform",
  beta_alpha = 1,
  beta_beta = 1,
  normal_mean = 0,
  normal_sd = 1,
  gamma_shape = 1,
  gamma_rate = 1,
  mcmc_method = "analytical",
  mcmc_samples = 10000,
  burnin_samples = 2000,
  thinning = 1,
  chains = 3,
  posterior_summary = TRUE,
  convergence_diagnostics = TRUE,
  prior_posterior_comparison = TRUE,
  credible_vs_confidence = TRUE,
  hpd_intervals = TRUE,
  sensitivity_analysis = TRUE,
  robustness_check = TRUE,
  clinical_interpretation = TRUE,
  posterior_plots = TRUE,
  trace_plots = TRUE
)Arguments
- data
- the data as a data frame 
- outcome
- Outcome variable for credible interval estimation 
- group_var
- Grouping variable for stratified analysis 
- covariates
- Covariate variables for adjusted analysis 
- outcome_type
- Type of outcome variable for appropriate modeling 
- credible_level
- Level for Bayesian credible intervals 
- additional_levels
- Comma-separated additional credible levels to compute 
- prior_type
- Prior distribution specification for Bayesian analysis 
- beta_alpha
- Alpha parameter for Beta prior distribution 
- beta_beta
- Beta parameter for Beta prior distribution 
- normal_mean
- Mean parameter for Normal prior distribution 
- normal_sd
- Standard deviation for Normal prior distribution 
- gamma_shape
- Shape parameter for Gamma prior distribution 
- gamma_rate
- Rate parameter for Gamma prior distribution 
- mcmc_method
- Method for posterior sampling and credible interval computation 
- mcmc_samples
- Number of MCMC samples for posterior estimation 
- burnin_samples
- Number of burn-in samples to discard 
- thinning
- Thinning interval for MCMC chains 
- chains
- Number of parallel MCMC chains 
- posterior_summary
- Compute posterior mean, median, mode, and credible intervals 
- convergence_diagnostics
- Assess MCMC convergence using R-hat and effective sample size 
- prior_posterior_comparison
- Compare prior and posterior distributions 
- credible_vs_confidence
- Compare Bayesian credible intervals with frequentist confidence intervals 
- hpd_intervals
- Compute highest posterior density (HPD) credible intervals 
- sensitivity_analysis
- Assess sensitivity to prior specification 
- robustness_check
- Perform robustness checks with different prior specifications 
- clinical_interpretation
- Provide clinical interpretation of credible intervals 
- posterior_plots
- Create posterior distribution and credible interval visualizations 
- trace_plots
- Generate MCMC trace plots for convergence assessment 
Value
A results object containing:
| results$instructions | a html | ||||
| results$dataInfo | a table | ||||
| results$priorSpecification | a table | ||||
| results$posteriorSummary | a table | ||||
| results$credibleIntervals | a table | ||||
| results$hpdIntervals | a table | ||||
| results$comparisonTable | a table | ||||
| results$convergenceDiagnostics | a table | ||||
| results$sensitivityAnalysis | a table | ||||
| results$robustnessCheck | a table | ||||
| results$clinicalInterpretation | a table | ||||
| results$posteriorPlot | an image | ||||
| results$priorPosteriorPlot | an image | ||||
| results$tracePlots | an image | ||||
| results$credibleComparisonPlot | an image | ||||
| results$sensitivityPlot | an image | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$dataInfo$asDF
as.data.frame(results$dataInfo)