Comprehensive Bayesian evaluation of diagnostic test performance including sensitivity, specificity, predictive values, likelihood ratios, and diagnostic odds ratios with full uncertainty quantification. Supports meta-analysis, hierarchical modeling, and comparative test evaluation.
Usage
bayesiandiagnostic(
data,
test_results,
gold_standard,
test_positive_level,
disease_positive_level,
study_id = NULL,
patient_id = NULL,
covariates,
analysis_type = "single_test",
comparison_test = NULL,
comparison_positive_level,
prior_type = "informative",
prior_sensitivity_mean = 0.8,
prior_sensitivity_precision = 10,
prior_specificity_mean = 0.9,
prior_specificity_precision = 10,
correlation_prior = 0,
bivariate_model = TRUE,
hierarchical_model = FALSE,
covariate_effects = FALSE,
heterogeneity_model = "random",
mcmc_samples = 10000,
mcmc_burnin = 5000,
mcmc_thin = 1,
mcmc_chains = 3,
mcmc_adapt = TRUE,
convergence_criterion = 1.1,
compute_sensitivity = TRUE,
compute_specificity = TRUE,
compute_ppv = TRUE,
compute_npv = TRUE,
compute_likelihood_ratios = TRUE,
compute_diagnostic_odds_ratio = TRUE,
compute_accuracy = TRUE,
compute_auc = FALSE,
prevalence_prior = 0.5,
decision_analysis = FALSE,
cost_fn = 1,
cost_fp = 1,
utility_tp = 1,
utility_tn = 1,
threshold_analysis = FALSE,
threshold_metric = "youden",
show_summary_statistics = TRUE,
show_posterior_distributions = TRUE,
show_credible_intervals = TRUE,
show_convergence_diagnostics = TRUE,
show_model_comparison = FALSE,
show_predictive_checks = FALSE,
show_clinical_interpretation = TRUE,
credible_interval = 0.95,
hpdi = TRUE,
set_seed = TRUE,
seed_value = 42,
parallel_chains = TRUE,
n_cores = 2,
robust_estimation = FALSE,
outlier_detection = FALSE,
publication_bias = FALSE,
sensitivity_analysis = FALSE
)Arguments
- data
The data as a data frame for Bayesian diagnostic test evaluation.
- test_results
.
- gold_standard
.
- test_positive_level
.
- disease_positive_level
.
- study_id
.
- patient_id
.
- covariates
.
- analysis_type
.
- comparison_test
.
- comparison_positive_level
.
- prior_type
.
- prior_sensitivity_mean
.
- prior_sensitivity_precision
.
- prior_specificity_mean
.
- prior_specificity_precision
.
- correlation_prior
.
- bivariate_model
.
- hierarchical_model
.
- covariate_effects
.
- heterogeneity_model
.
- mcmc_samples
.
- mcmc_burnin
.
- mcmc_thin
.
- mcmc_chains
.
- mcmc_adapt
.
- convergence_criterion
.
- compute_sensitivity
.
- compute_specificity
.
- compute_ppv
.
- compute_npv
.
- compute_likelihood_ratios
.
- compute_diagnostic_odds_ratio
.
- compute_accuracy
.
- compute_auc
.
- prevalence_prior
.
- decision_analysis
.
- cost_fn
.
- cost_fp
.
- utility_tp
.
- utility_tn
.
- threshold_analysis
.
- threshold_metric
.
- show_summary_statistics
.
- show_posterior_distributions
.
- show_credible_intervals
.
- show_convergence_diagnostics
.
- show_model_comparison
.
- show_predictive_checks
.
- show_clinical_interpretation
.
- credible_interval
.
- hpdi
.
- set_seed
.
- seed_value
.
- parallel_chains
.
- n_cores
.
- robust_estimation
.
- outlier_detection
.
- publication_bias
.
- sensitivity_analysis
.
Value
A results object containing:
results$summaryStatistics | a table | ||||
results$diagnosticPerformance | a table | ||||
results$sensitivitySpecificity | a table | ||||
results$predictiveValues | a table | ||||
results$likelihoodRatios | a table | ||||
results$diagnosticOddsRatio | a table | ||||
results$convergenceDiagnostics | a table | ||||
results$posteriorSummary | a table | ||||
results$modelComparison | a table | ||||
results$metaAnalysisResults | a table | ||||
results$heterogeneityAssessment | a table | ||||
results$covariateEffects | a table | ||||
results$thresholdAnalysis | a table | ||||
results$decisionAnalysis | a table | ||||
results$posteriorPredictiveChecks | a table | ||||
results$sensitivityAnalysis | a table | ||||
results$clinicalInterpretation | a html | ||||
results$methodsExplanation | a html | ||||
results$rocCurve | an image | ||||
results$posteriorDistributionsPlot | an image | ||||
results$sensitivitySpecificityPlot | an image | ||||
results$predictiveValuesPlot | an image | ||||
results$likelihoodRatioPlot | an image | ||||
results$convergencePlots | an image | ||||
results$forestPlot | an image | ||||
results$heterogeneityPlot | an image | ||||
results$thresholdOptimizationPlot | an image | ||||
results$decisionCurvePlot | an image |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$summaryStatistics$asDF
as.data.frame(results$summaryStatistics)