Bayesian Model Averaging for survival analysis
Usage
bayesianma(
  data,
  time_var,
  event_var,
  pred_vars,
  prior_type = "uniform",
  prior_inclusion_prob = 0.5,
  beta_alpha = 1,
  beta_beta = 1,
  complexity_penalty = 1,
  mcmc_method = "mc3",
  mcmc_chains = 3,
  mcmc_iterations = 5000,
  burn_in = 1000,
  thinning = 1,
  convergence_diagnostic = "gelman_rubin",
  model_selection_method = "highest_posterior",
  occam_ratio = 20,
  temperature_ladder = "1.0,1.5,2.0,3.0",
  proposal_variance = 1,
  variable_selection_threshold = 0.5,
  uncertainty_quantification = TRUE,
  prediction_intervals = TRUE,
  credible_level = 0.95,
  model_diagnostics = TRUE,
  sensitivity_analysis = FALSE,
  cross_validation = FALSE,
  cv_folds = 5,
  parallel_processing = FALSE,
  seed_value = 42,
  show_summary = TRUE,
  show_model_space = TRUE,
  show_coefficients = TRUE,
  show_inclusion_probs = TRUE,
  show_top_models = TRUE,
  show_diagnostics = TRUE,
  show_predictions = FALSE,
  plot_model_probs = TRUE,
  plot_inclusion_probs = TRUE,
  plot_coefficients = TRUE,
  plot_convergence = TRUE,
  plot_model_space = FALSE,
  plot_predictions = FALSE,
  showExplanations = TRUE
)Arguments
- data
- the data as a data frame 
- time_var
- the time-to-event variable 
- event_var
- the event indicator variable (0/1 or FALSE/TRUE) 
- pred_vars
- the predictor variables for model averaging 
- prior_type
- type of prior distribution for model space 
- prior_inclusion_prob
- prior probability of variable inclusion (for uniform/beta-binomial priors) 
- beta_alpha
- alpha parameter for beta-binomial prior 
- beta_beta
- beta parameter for beta-binomial prior 
- complexity_penalty
- penalty parameter for complexity prior 
- mcmc_method
- MCMC sampling method for model space exploration 
- mcmc_chains
- number of MCMC chains 
- mcmc_iterations
- number of MCMC iterations per chain 
- burn_in
- number of burn-in iterations 
- thinning
- thinning interval for MCMC samples 
- convergence_diagnostic
- convergence diagnostic method 
- model_selection_method
- method for selecting representative model 
- occam_ratio
- ratio for Occam's window model selection 
- temperature_ladder
- temperature ladder for MC³ (comma-separated values). Higher temperatures enable better mixing 
- proposal_variance
- variance for parameter proposal distributions 
- variable_selection_threshold
- posterior probability threshold for variable selection 
- uncertainty_quantification
- whether to perform comprehensive uncertainty quantification 
- prediction_intervals
- whether to compute prediction intervals 
- credible_level
- level for credible intervals 
- model_diagnostics
- whether to perform comprehensive model diagnostics 
- sensitivity_analysis
- whether to perform prior sensitivity analysis 
- cross_validation
- whether to perform cross-validation assessment 
- cv_folds
- number of folds for cross-validation 
- parallel_processing
- whether to use parallel processing for MCMC 
- seed_value
- random seed for reproducible results 
- show_summary
- show model averaging summary 
- show_model_space
- show model space exploration results 
- show_coefficients
- show model-averaged coefficient estimates 
- show_inclusion_probs
- show posterior inclusion probabilities 
- show_top_models
- show highest probability models 
- show_diagnostics
- show MCMC convergence diagnostics 
- show_predictions
- show model-averaged predictions 
- plot_model_probs
- plot model posterior probabilities 
- plot_inclusion_probs
- plot variable inclusion probabilities 
- plot_coefficients
- plot posterior coefficient distributions 
- plot_convergence
- plot MCMC convergence diagnostics 
- plot_model_space
- plot model space exploration 
- plot_predictions
- plot model-averaged predictions 
- showExplanations
- show explanations for the analysis 
Value
A results object containing:
| results$instructions | a html | ||||
| results$todo | a html | ||||
| results$summary | a table | ||||
| results$modelSpace | a table | ||||
| results$averagedCoefficients | a table | ||||
| results$inclusionProbabilities | a table | ||||
| results$topModels | a table | ||||
| results$mcmcDiagnostics | a table | ||||
| results$selectedModel | a table | ||||
| results$uncertaintyQuantification | a table | ||||
| results$sensitivityAnalysis | a table | ||||
| results$crossValidation | a table | ||||
| results$modelProbsPlot | an image | ||||
| results$inclusionProbsPlot | an image | ||||
| results$coefficientsPlot | an image | ||||
| results$convergencePlot | an image | ||||
| results$modelSpacePlot | an image | ||||
| results$predictionsPlot | an image | ||||
| results$explanations | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$summary$asDF
as.data.frame(results$summary)