Skip to contents

Performs Bayesian meta-analysis using hierarchical models for evidence synthesis across multiple studies. This approach accounts for both within-study and between-study variability using informative prior distributions and MCMC sampling methods.

Usage

bayesianmetaanalysis(
  data,
  effectSize,
  standardError,
  studyId,
  covariates,
  modelType = "random_effects",
  outcomeType = "continuous",
  priorType = "weakly_informative",
  mcmcChains = 4,
  mcmcIterations = 5000,
  warmupIterations = 2500,
  credibleInterval = 0.95,
  publicationBias = FALSE,
  posteriorPredictive = TRUE,
  plotForest = TRUE,
  plotPosterior = TRUE
)

Arguments

data

the data as a data frame

effectSize

the effect size variable (e.g., mean difference, log odds ratio)

standardError

the standard error of the effect size

studyId

variable identifying individual studies

covariates

study-level covariates for meta-regression

modelType

the type of meta-analysis model to fit

outcomeType

the type of outcome being meta-analyzed

priorType

the type of prior distribution to use

mcmcChains

number of MCMC chains for posterior sampling

mcmcIterations

number of MCMC iterations per chain

warmupIterations

number of warmup (burn-in) iterations per chain

credibleInterval

credible interval probability

publicationBias

whether to assess and adjust for publication bias

posteriorPredictive

whether to perform posterior predictive model checking

plotForest

whether to create Bayesian forest plot

plotPosterior

whether to plot posterior distributions

Value

A results object containing:

results$instructionsa html
results$modelSummarya table
results$studyEffectsa table
results$mcmcDiagnosticsa table
results$modelComparisona table
results$publicationBiasResultsa table
results$forestPlotan image
results$posteriorPlotan image
results$analysisReporta html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelSummary$asDF

as.data.frame(results$modelSummary)

Details

Key features:

  • Random effects and fixed effects Bayesian meta-analysis

  • Multiple outcome types (continuous, binary, time-to-event)

  • Hierarchical modeling with informative and non-informative priors

  • MCMC sampling with convergence diagnostics

  • Posterior predictive checking and model comparison

  • Meta-regression with study-level covariates

  • Publication bias assessment and adjustment

Examples

# Bayesian meta-analysis of treatment effects
bayesianmetaanalysis(
    data = data,
    effectSize = "effect",
    standardError = "se",
    studyId = "study",
    modelType = "random_effects",
    outcomeType = "continuous"
)