Performs Bayesian meta-analysis using hierarchical models for evidence synthesis across multiple studies. This approach accounts for both within-study and between-study variability using informative prior distributions and MCMC sampling methods.
Usage
bayesianmetaanalysis(
  data,
  effectSize,
  standardError,
  studyId,
  covariates,
  modelType = "random_effects",
  outcomeType = "continuous",
  priorType = "weakly_informative",
  mcmcChains = 4,
  mcmcIterations = 5000,
  warmupIterations = 2500,
  credibleInterval = 0.95,
  publicationBias = FALSE,
  posteriorPredictive = TRUE,
  plotForest = TRUE,
  plotPosterior = TRUE
)Arguments
- data
- the data as a data frame 
- effectSize
- the effect size variable (e.g., mean difference, log odds ratio) 
- standardError
- the standard error of the effect size 
- studyId
- variable identifying individual studies 
- covariates
- study-level covariates for meta-regression 
- modelType
- the type of meta-analysis model to fit 
- outcomeType
- the type of outcome being meta-analyzed 
- priorType
- the type of prior distribution to use 
- mcmcChains
- number of MCMC chains for posterior sampling 
- mcmcIterations
- number of MCMC iterations per chain 
- warmupIterations
- number of warmup (burn-in) iterations per chain 
- credibleInterval
- credible interval probability 
- publicationBias
- whether to assess and adjust for publication bias 
- posteriorPredictive
- whether to perform posterior predictive model checking 
- plotForest
- whether to create Bayesian forest plot 
- plotPosterior
- whether to plot posterior distributions 
Value
A results object containing:
| results$instructions | a html | ||||
| results$modelSummary | a table | ||||
| results$studyEffects | a table | ||||
| results$mcmcDiagnostics | a table | ||||
| results$modelComparison | a table | ||||
| results$publicationBiasResults | a table | ||||
| results$forestPlot | an image | ||||
| results$posteriorPlot | an image | ||||
| results$analysisReport | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSummary$asDF
as.data.frame(results$modelSummary)
Details
Key features:
- Random effects and fixed effects Bayesian meta-analysis 
- Multiple outcome types (continuous, binary, time-to-event) 
- Hierarchical modeling with informative and non-informative priors 
- MCMC sampling with convergence diagnostics 
- Posterior predictive checking and model comparison 
- Meta-regression with study-level covariates 
- Publication bias assessment and adjustment