Advanced Bayesian network meta-analysis for multiple treatment comparisons using network geometry. Supports direct and indirect comparisons, network coherence assessment, and ranking of multiple interventions with uncertainty quantification for clinical decision making.
Usage
bayesiannetworkma(
data,
study_id,
treatment,
outcome,
sample_size,
outcomeLevel,
standard_error = NULL,
control_rate = NULL,
network_type = "mixed_evidence",
outcome_type = "binary_or",
reference_treatment,
baseline_model = "exchangeable",
random_effects_model = "random_univariate",
heterogeneity_model = "common",
correlation_structure = "unstructured",
treatment_effect_prior = "vague_normal",
heterogeneity_prior = "half_normal",
prior_mean_effect = 0,
prior_sd_effect = 10,
prior_heterogeneity_sd = 1,
assess_coherence = TRUE,
coherence_method = "node_splitting",
inconsistency_threshold = 0.05,
mcmc_samples = 10000,
mcmc_burnin = 5000,
mcmc_thin = 2,
mcmc_chains = 3,
ranking_analysis = TRUE,
ranking_measure = "sucra",
pairwise_probabilities = TRUE,
superiority_threshold = 0,
model_selection = TRUE,
model_comparison_criteria = "dic",
network_plot = TRUE,
network_layout = "spring",
edge_weights = "n_studies",
show_network_summary = TRUE,
show_treatment_effects = TRUE,
show_heterogeneity_analysis = TRUE,
show_coherence_results = TRUE,
show_ranking_results = TRUE,
show_forest_plots = TRUE,
show_league_table = TRUE,
show_convergence_diagnostics = TRUE,
show_interpretation = TRUE,
meta_regression_covariates = NULL,
treatment_classes = NULL,
multi_arm_correction = TRUE,
zero_events_correction = 0.5,
clinical_context = "therapeutic",
confidence_level = 0.95,
set_seed = TRUE,
seed_value = 42,
parallel_processing = TRUE,
n_cores = 2
)Arguments
- data
The data as a data frame for Bayesian network meta-analysis.
- study_id
.
- treatment
.
- outcome
.
- sample_size
.
- outcomeLevel
.
- standard_error
For continuous outcomes
- control_rate
Baseline event rate for binary outcomes
- network_type
.
- outcome_type
.
- reference_treatment
Reference treatment for network comparisons
- baseline_model
.
- random_effects_model
.
- heterogeneity_model
.
- correlation_structure
.
- treatment_effect_prior
.
- heterogeneity_prior
.
- prior_mean_effect
.
- prior_sd_effect
.
- prior_heterogeneity_sd
.
- assess_coherence
.
- coherence_method
.
- inconsistency_threshold
.
- mcmc_samples
.
- mcmc_burnin
.
- mcmc_thin
.
- mcmc_chains
.
- ranking_analysis
.
- ranking_measure
.
- pairwise_probabilities
.
- superiority_threshold
Threshold for clinically meaningful superiority
- model_selection
.
- model_comparison_criteria
.
- network_plot
.
- network_layout
.
- edge_weights
.
- show_network_summary
.
- show_treatment_effects
.
- show_heterogeneity_analysis
.
- show_coherence_results
.
- show_ranking_results
.
- show_forest_plots
.
- show_league_table
.
- show_convergence_diagnostics
.
- show_interpretation
.
- meta_regression_covariates
.
- treatment_classes
For class-effect models
- multi_arm_correction
.
- zero_events_correction
.
- clinical_context
.
- confidence_level
.
- set_seed
.
- seed_value
.
- parallel_processing
.
- n_cores
.
Value
A results object containing:
results$networkSummary | a table | ||||
results$networkCharacteristics | a table | ||||
results$treatmentEffects | a table | ||||
results$heterogeneityAnalysis | a table | ||||
results$coherenceAssessment | a table | ||||
results$treatmentRankings | a table | ||||
results$pairwiseComparisons | a table | ||||
results$leagueTable | a table | ||||
results$modelComparison | a table | ||||
results$convergenceDiagnostics | a table | ||||
results$metaRegressionResults | a table | ||||
results$sensitivityAnalysis | a table | ||||
results$clinicalInterpretation | a html | ||||
results$methodsExplanation | a html | ||||
results$networkPlot | an image | ||||
results$forestPlots | an image | ||||
results$rankingPlots | an image | ||||
results$heterogeneityPlots | an image | ||||
results$coherencePlots | an image | ||||
results$posteriorDistributionPlots | an image | ||||
results$convergencePlots | an image | ||||
results$comparisonMatrix | an image |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$networkSummary$asDF
as.data.frame(results$networkSummary)