Skip to contents

Advanced Bayesian network meta-analysis for multiple treatment comparisons using network geometry. Supports direct and indirect comparisons, network coherence assessment, and ranking of multiple interventions with uncertainty quantification for clinical decision making.

Usage

bayesiannetworkma(
  data,
  study_id,
  treatment,
  outcome,
  sample_size,
  outcomeLevel,
  standard_error = NULL,
  control_rate = NULL,
  network_type = "mixed_evidence",
  outcome_type = "binary_or",
  reference_treatment,
  baseline_model = "exchangeable",
  random_effects_model = "random_univariate",
  heterogeneity_model = "common",
  correlation_structure = "unstructured",
  treatment_effect_prior = "vague_normal",
  heterogeneity_prior = "half_normal",
  prior_mean_effect = 0,
  prior_sd_effect = 10,
  prior_heterogeneity_sd = 1,
  assess_coherence = TRUE,
  coherence_method = "node_splitting",
  inconsistency_threshold = 0.05,
  mcmc_samples = 10000,
  mcmc_burnin = 5000,
  mcmc_thin = 2,
  mcmc_chains = 3,
  ranking_analysis = TRUE,
  ranking_measure = "sucra",
  pairwise_probabilities = TRUE,
  superiority_threshold = 0,
  model_selection = TRUE,
  model_comparison_criteria = "dic",
  network_plot = TRUE,
  network_layout = "spring",
  edge_weights = "n_studies",
  show_network_summary = TRUE,
  show_treatment_effects = TRUE,
  show_heterogeneity_analysis = TRUE,
  show_coherence_results = TRUE,
  show_ranking_results = TRUE,
  show_forest_plots = TRUE,
  show_league_table = TRUE,
  show_convergence_diagnostics = TRUE,
  show_interpretation = TRUE,
  meta_regression_covariates = NULL,
  treatment_classes = NULL,
  multi_arm_correction = TRUE,
  zero_events_correction = 0.5,
  clinical_context = "therapeutic",
  confidence_level = 0.95,
  set_seed = TRUE,
  seed_value = 42,
  parallel_processing = TRUE,
  n_cores = 2
)

Arguments

data

The data as a data frame for Bayesian network meta-analysis.

study_id

.

treatment

.

outcome

.

sample_size

.

outcomeLevel

.

standard_error

For continuous outcomes

control_rate

Baseline event rate for binary outcomes

network_type

.

outcome_type

.

reference_treatment

Reference treatment for network comparisons

baseline_model

.

random_effects_model

.

heterogeneity_model

.

correlation_structure

.

treatment_effect_prior

.

heterogeneity_prior

.

prior_mean_effect

.

prior_sd_effect

.

prior_heterogeneity_sd

.

assess_coherence

.

coherence_method

.

inconsistency_threshold

.

mcmc_samples

.

mcmc_burnin

.

mcmc_thin

.

mcmc_chains

.

ranking_analysis

.

ranking_measure

.

pairwise_probabilities

.

superiority_threshold

Threshold for clinically meaningful superiority

model_selection

.

model_comparison_criteria

.

network_plot

.

network_layout

.

edge_weights

.

show_network_summary

.

show_treatment_effects

.

show_heterogeneity_analysis

.

show_coherence_results

.

show_ranking_results

.

show_forest_plots

.

show_league_table

.

show_convergence_diagnostics

.

show_interpretation

.

meta_regression_covariates

.

treatment_classes

For class-effect models

multi_arm_correction

.

zero_events_correction

.

clinical_context

.

confidence_level

.

set_seed

.

seed_value

.

parallel_processing

.

n_cores

.

Value

A results object containing:

results$networkSummarya table
results$networkCharacteristicsa table
results$treatmentEffectsa table
results$heterogeneityAnalysisa table
results$coherenceAssessmenta table
results$treatmentRankingsa table
results$pairwiseComparisonsa table
results$leagueTablea table
results$modelComparisona table
results$convergenceDiagnosticsa table
results$metaRegressionResultsa table
results$sensitivityAnalysisa table
results$clinicalInterpretationa html
results$methodsExplanationa html
results$networkPlotan image
results$forestPlotsan image
results$rankingPlotsan image
results$heterogeneityPlotsan image
results$coherencePlotsan image
results$posteriorDistributionPlotsan image
results$convergencePlotsan image
results$comparisonMatrixan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$networkSummary$asDF

as.data.frame(results$networkSummary)

Examples

# Bayesian network meta-analysis
bayesiannetworkma(
    data = network_data,
    study_id = "study",
    treatment = "treatment",
    outcome = "response",
    sample_size = "n",
    network_type = "mixed_evidence"
)