Advanced Bayesian network meta-analysis for multiple treatment comparisons using network geometry. Supports direct and indirect comparisons, network coherence assessment, and ranking of multiple interventions with uncertainty quantification for clinical decision making.
Usage
bayesiannetworkma(
  data,
  study_id,
  treatment,
  outcome,
  sample_size,
  outcomeLevel,
  standard_error = NULL,
  control_rate = NULL,
  network_type = "mixed_evidence",
  outcome_type = "binary_or",
  reference_treatment,
  baseline_model = "exchangeable",
  random_effects_model = "random_univariate",
  heterogeneity_model = "common",
  correlation_structure = "unstructured",
  treatment_effect_prior = "vague_normal",
  heterogeneity_prior = "half_normal",
  prior_mean_effect = 0,
  prior_sd_effect = 10,
  prior_heterogeneity_sd = 1,
  assess_coherence = TRUE,
  coherence_method = "node_splitting",
  inconsistency_threshold = 0.05,
  mcmc_samples = 10000,
  mcmc_burnin = 5000,
  mcmc_thin = 2,
  mcmc_chains = 3,
  ranking_analysis = TRUE,
  ranking_measure = "sucra",
  pairwise_probabilities = TRUE,
  superiority_threshold = 0,
  model_selection = TRUE,
  model_comparison_criteria = "dic",
  network_plot = TRUE,
  network_layout = "spring",
  edge_weights = "n_studies",
  show_network_summary = TRUE,
  show_treatment_effects = TRUE,
  show_heterogeneity_analysis = TRUE,
  show_coherence_results = TRUE,
  show_ranking_results = TRUE,
  show_forest_plots = TRUE,
  show_league_table = TRUE,
  show_convergence_diagnostics = TRUE,
  show_interpretation = TRUE,
  meta_regression_covariates = NULL,
  treatment_classes = NULL,
  multi_arm_correction = TRUE,
  zero_events_correction = 0.5,
  clinical_context = "therapeutic",
  confidence_level = 0.95,
  set_seed = TRUE,
  seed_value = 42,
  parallel_processing = TRUE,
  n_cores = 2
)Arguments
- data
- The data as a data frame for Bayesian network meta-analysis. 
- study_id
- . 
- treatment
- . 
- outcome
- . 
- sample_size
- . 
- outcomeLevel
- . 
- standard_error
- For continuous outcomes 
- control_rate
- Baseline event rate for binary outcomes 
- network_type
- . 
- outcome_type
- . 
- reference_treatment
- Reference treatment for network comparisons 
- baseline_model
- . 
- random_effects_model
- . 
- heterogeneity_model
- . 
- correlation_structure
- . 
- treatment_effect_prior
- . 
- heterogeneity_prior
- . 
- prior_mean_effect
- . 
- prior_sd_effect
- . 
- prior_heterogeneity_sd
- . 
- assess_coherence
- . 
- coherence_method
- . 
- inconsistency_threshold
- . 
- mcmc_samples
- . 
- mcmc_burnin
- . 
- mcmc_thin
- . 
- mcmc_chains
- . 
- ranking_analysis
- . 
- ranking_measure
- . 
- pairwise_probabilities
- . 
- superiority_threshold
- Threshold for clinically meaningful superiority 
- model_selection
- . 
- model_comparison_criteria
- . 
- network_plot
- . 
- network_layout
- . 
- edge_weights
- . 
- show_network_summary
- . 
- show_treatment_effects
- . 
- show_heterogeneity_analysis
- . 
- show_coherence_results
- . 
- show_ranking_results
- . 
- show_forest_plots
- . 
- show_league_table
- . 
- show_convergence_diagnostics
- . 
- show_interpretation
- . 
- meta_regression_covariates
- . 
- treatment_classes
- For class-effect models 
- multi_arm_correction
- . 
- zero_events_correction
- . 
- clinical_context
- . 
- confidence_level
- . 
- set_seed
- . 
- seed_value
- . 
- parallel_processing
- . 
- n_cores
- . 
Value
A results object containing:
| results$networkSummary | a table | ||||
| results$networkCharacteristics | a table | ||||
| results$treatmentEffects | a table | ||||
| results$heterogeneityAnalysis | a table | ||||
| results$coherenceAssessment | a table | ||||
| results$treatmentRankings | a table | ||||
| results$pairwiseComparisons | a table | ||||
| results$leagueTable | a table | ||||
| results$modelComparison | a table | ||||
| results$convergenceDiagnostics | a table | ||||
| results$metaRegressionResults | a table | ||||
| results$sensitivityAnalysis | a table | ||||
| results$clinicalInterpretation | a html | ||||
| results$methodsExplanation | a html | ||||
| results$networkPlot | an image | ||||
| results$forestPlots | an image | ||||
| results$rankingPlots | an image | ||||
| results$heterogeneityPlots | an image | ||||
| results$coherencePlots | an image | ||||
| results$posteriorDistributionPlots | an image | ||||
| results$convergencePlots | an image | ||||
| results$comparisonMatrix | an image | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$networkSummary$asDF
as.data.frame(results$networkSummary)