Beta-Binomial Diagnostic Accuracy Models
Source:R/betabinomialdiagnostic.h.R
betabinomialdiagnostic.RdBeta-binomial models for overdispersed diagnostic accuracy data. Handles heterogeneity in sensitivity and specificity across studies or centers using beta-binomial distributions with flexible correlation structures.
Usage
betabinomialdiagnostic(
test_result,
disease_status,
study_id = NULL,
covariates = NULL,
overdispersion_model = "beta_binomial",
correlation_structure = "independent",
estimation_method = "maximum_likelihood",
heterogeneity_test = TRUE,
tau_squared_method = "dersimonian_laird",
confidence_level = 0.95,
alpha_prior = 1,
beta_prior = 1,
alpha_prior_spec = 1,
beta_prior_spec = 1,
mcmc_iterations = 10000,
burnin_iterations = 2000,
thin_factor = 5,
convergence_diagnostics = TRUE,
prediction_intervals = TRUE,
forest_plot = TRUE,
summary_roc_curve = TRUE,
residual_plots = FALSE,
influence_diagnostics = FALSE,
publication_bias = FALSE,
subgroup_analysis = FALSE,
robust_variance = FALSE,
finite_sample_correction = TRUE
)Arguments
- test_result
Test result variable
- disease_status
Gold standard disease status
- study_id
Clustering variable for multi-center studies
- covariates
Covariates for explaining between-study heterogeneity
- overdispersion_model
Statistical model for overdispersed diagnostic data
- correlation_structure
Assumed correlation structure
- estimation_method
Method for estimating model parameters
- heterogeneity_test
Whether to test for heterogeneity
- tau_squared_method
Estimator for τ² (heterogeneity variance)
- confidence_level
Confidence level for parameter estimates
- alpha_prior
Prior alpha for sensitivity in Bayesian models
- beta_prior
Prior beta for sensitivity in Bayesian models
- alpha_prior_spec
Prior alpha for specificity in Bayesian models
- beta_prior_spec
Prior beta for specificity in Bayesian models
- mcmc_iterations
MCMC iterations for posterior sampling
- burnin_iterations
MCMC burn-in iterations
- thin_factor
Keep every nth MCMC sample
- convergence_diagnostics
Whether to check MCMC convergence
- prediction_intervals
Whether to compute prediction intervals
- forest_plot
Whether to create forest plots
- summary_roc_curve
Whether to plot summary ROC curve
- residual_plots
Whether to create residual diagnostic plots
- influence_diagnostics
Whether to perform influence analysis
- publication_bias
Whether to assess publication bias
- subgroup_analysis
Whether to conduct subgroup analyses
- robust_variance
Whether to use robust standard errors
- finite_sample_correction
Whether to apply small sample corrections
Value
A results object containing:
results$instructions | a html | ||||
results$modelSummary | a table | ||||
results$overdispersionParameters | a table | ||||
results$heterogeneityTests | a table | ||||
results$studyLevelResults | a table | ||||
results$pooledEstimates | a table | ||||
results$correlationResults | a table | ||||
results$convergenceDiagnostics | a table | ||||
results$subgroupAnalysis | a table | ||||
results$influenceAnalysis | a table | ||||
results$publicationBiasTests | a table | ||||
results$forestPlotSensitivity | an image | ||||
results$forestPlotSpecificity | an image | ||||
results$summaryROCPlot | an image | ||||
results$residualPlots | an image | ||||
results$convergencePlots | an image | ||||
results$funnelPlot | an image | ||||
results$methodExplanation | a html |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSummary$asDF
as.data.frame(results$modelSummary)