Beta-Binomial Diagnostic Accuracy Models
Source:R/betabinomialdiagnostic.h.R
      betabinomialdiagnostic.RdBeta-binomial models for overdispersed diagnostic accuracy data. Handles heterogeneity in sensitivity and specificity across studies or centers using beta-binomial distributions with flexible correlation structures.
Usage
betabinomialdiagnostic(
  test_result,
  disease_status,
  study_id = NULL,
  covariates = NULL,
  overdispersion_model = "beta_binomial",
  correlation_structure = "independent",
  estimation_method = "maximum_likelihood",
  heterogeneity_test = TRUE,
  tau_squared_method = "dersimonian_laird",
  confidence_level = 0.95,
  alpha_prior = 1,
  beta_prior = 1,
  alpha_prior_spec = 1,
  beta_prior_spec = 1,
  mcmc_iterations = 10000,
  burnin_iterations = 2000,
  thin_factor = 5,
  convergence_diagnostics = TRUE,
  prediction_intervals = TRUE,
  forest_plot = TRUE,
  summary_roc_curve = TRUE,
  residual_plots = FALSE,
  influence_diagnostics = FALSE,
  publication_bias = FALSE,
  subgroup_analysis = FALSE,
  robust_variance = FALSE,
  finite_sample_correction = TRUE
)Arguments
- test_result
- Test result variable 
- disease_status
- Gold standard disease status 
- study_id
- Clustering variable for multi-center studies 
- covariates
- Covariates for explaining between-study heterogeneity 
- overdispersion_model
- Statistical model for overdispersed diagnostic data 
- correlation_structure
- Assumed correlation structure 
- estimation_method
- Method for estimating model parameters 
- heterogeneity_test
- Whether to test for heterogeneity 
- tau_squared_method
- Estimator for τ² (heterogeneity variance) 
- confidence_level
- Confidence level for parameter estimates 
- alpha_prior
- Prior alpha for sensitivity in Bayesian models 
- beta_prior
- Prior beta for sensitivity in Bayesian models 
- alpha_prior_spec
- Prior alpha for specificity in Bayesian models 
- beta_prior_spec
- Prior beta for specificity in Bayesian models 
- mcmc_iterations
- MCMC iterations for posterior sampling 
- burnin_iterations
- MCMC burn-in iterations 
- thin_factor
- Keep every nth MCMC sample 
- convergence_diagnostics
- Whether to check MCMC convergence 
- prediction_intervals
- Whether to compute prediction intervals 
- forest_plot
- Whether to create forest plots 
- summary_roc_curve
- Whether to plot summary ROC curve 
- residual_plots
- Whether to create residual diagnostic plots 
- influence_diagnostics
- Whether to perform influence analysis 
- publication_bias
- Whether to assess publication bias 
- subgroup_analysis
- Whether to conduct subgroup analyses 
- robust_variance
- Whether to use robust standard errors 
- finite_sample_correction
- Whether to apply small sample corrections 
Value
A results object containing:
| results$instructions | a html | ||||
| results$modelSummary | a table | ||||
| results$overdispersionParameters | a table | ||||
| results$heterogeneityTests | a table | ||||
| results$studyLevelResults | a table | ||||
| results$pooledEstimates | a table | ||||
| results$correlationResults | a table | ||||
| results$convergenceDiagnostics | a table | ||||
| results$subgroupAnalysis | a table | ||||
| results$influenceAnalysis | a table | ||||
| results$publicationBiasTests | a table | ||||
| results$forestPlotSensitivity | an image | ||||
| results$forestPlotSpecificity | an image | ||||
| results$summaryROCPlot | an image | ||||
| results$residualPlots | an image | ||||
| results$convergencePlots | an image | ||||
| results$funnelPlot | an image | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSummary$asDF
as.data.frame(results$modelSummary)