Skip to contents

Implements cause-specific hazards modeling for competing risks analysis. This approach models the hazard for each specific cause separately, treating other causes as censoring events. Provides comprehensive analysis including hazard ratios, cumulative incidence functions, and model comparisons across different causes of failure.

Usage

causespecifichazards(
  data,
  elapsedtime,
  outcome,
  covariates = NULL,
  cause_variable = NULL,
  reference_cause = "1",
  model_type = "cox",
  include_se = TRUE,
  include_ci = TRUE,
  conf_level = 0.95,
  cumulative_incidence = TRUE,
  model_comparison = FALSE,
  proportional_hazards_test = FALSE,
  plot_cumulative_incidence = FALSE,
  plot_hazards = FALSE,
  plot_diagnostics = FALSE,
  stratify_plots = FALSE
)

Arguments

data

the data as a data frame

elapsedtime

Survival time or follow-up duration variable. Should contain positive numeric values representing the time to event or censoring.

outcome

Event indicator variable. Should contain values indicating the type of event or censoring (0 for censored, 1,2,3... for different causes).

covariates

Vector of variable names for covariates/explanatory variables to include in the cause-specific hazards models.

cause_variable

Optional separate variable identifying the cause of failure. If not specified, the outcome variable will be used to identify causes.

reference_cause

The reference cause for model comparison and hazard ratio calculations. Should match one of the cause levels in the data.

model_type

Type of survival model to fit for each cause-specific hazard.

include_se

Whether to compute and display standard errors for parameter estimates.

include_ci

Whether to compute and display confidence intervals for parameter estimates.

conf_level

Confidence level for confidence intervals (between 0.5 and 0.99).

cumulative_incidence

Whether to compute and display cumulative incidence functions for each cause.

model_comparison

Whether to perform model comparison across different causes using likelihood ratio tests and information criteria.

proportional_hazards_test

Whether to test the proportional hazards assumption for Cox models.

plot_cumulative_incidence

Whether to create cumulative incidence function plots for each cause.

plot_hazards

Whether to create hazard function plots for each cause.

plot_diagnostics

Whether to create diagnostic plots for model assessment (residuals, etc.).

stratify_plots

Whether to stratify plots by covariate levels for better visualization.

Value

A results object containing:

results$overviewOverview of the cause-specific hazards analysis
results$cause_summarySummary of events by cause
results$model_fitModel fit statistics for each cause-specific model
results$coefficientsParameter estimates for each cause-specific model
results$cumulative_incidence_tableCumulative incidence estimates by cause and time points
results$model_comparison_tableComparison of model fit across different causes
results$proportional_hazards_tableTests of proportional hazards assumption for each cause
results$cumulative_incidence_plotPlot of cumulative incidence functions by cause
results$hazards_plotPlot of hazard functions by cause
results$diagnostics_plotModel diagnostic plots for cause-specific models
results$model_summaryComprehensive summary and interpretation of cause-specific hazards analysis

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$overview$asDF

as.data.frame(results$overview)

Examples

data('mgus2', package='survival')

causespecifichazards(data = mgus2,
                    elapsedtime = 'futime',
                    outcome = 'death',
                    covariates = c('age', 'sex'),
                    cause_variable = 'death',
                    reference_cause = '1')