Skip to contents

Comprehensive toolkit for developing clinical nomograms, risk score calculators, and decision support tools. Transforms statistical models into practical clinical instruments for personalized risk assessment and treatment planning.

Usage

clinicalnomograms(
  data,
  time_var,
  status_var,
  outcome_var,
  covariates,
  nomogram_type = "survival_nomogram",
  model_selection = "all_variables",
  prediction_times = "1,3,5,10",
  confidence_level = 0.95,
  validation_method = "bootstrap",
  bootstrap_samples = 1000,
  cv_folds = 10,
  nomogram_title = "Clinical Risk Assessment Nomogram",
  points_scale = 100,
  calibration_assessment = TRUE,
  discrimination_assessment = TRUE,
  decision_curve_analysis = TRUE,
  risk_groups = TRUE,
  risk_thresholds = "0.33,0.67",
  interactive_nomogram = TRUE,
  risk_calculator = TRUE,
  clinical_scenarios = TRUE,
  model_equation = TRUE,
  confidence_intervals = TRUE,
  external_validation = "",
  performance_metrics = TRUE,
  variable_importance = TRUE,
  sensitivity_analysis = FALSE,
  missing_data_handling = "complete_case",
  export_formats = TRUE,
  reporting_guidelines = "tripod",
  clinical_implementation = TRUE
)

Arguments

data

The data as a data frame.

time_var

Time to event or censoring

status_var

Event indicator variable

outcome_var

Binary or continuous outcome

covariates

Predictor variables for model building

nomogram_type

Nomogram model specification

model_selection

Variable selection approach

prediction_times

Times for survival probability estimation

confidence_level

CI level for nomogram

validation_method

Validation approach

bootstrap_samples

Bootstrap iteration count

cv_folds

CV fold specification

nomogram_title

Nomogram plot title

points_scale

Point scale range

calibration_assessment

Enable calibration evaluation

discrimination_assessment

Enable discrimination analysis

decision_curve_analysis

Enable DCA analysis

risk_groups

Enable risk stratification

risk_thresholds

Risk stratification cutpoints

interactive_nomogram

Enable interactive visualization

risk_calculator

Create lookup table

clinical_scenarios

Generate clinical examples

model_equation

Display regression equation

confidence_intervals

Display prediction intervals

external_validation

External validation data source

performance_metrics

Enable performance assessment

variable_importance

Calculate variable contributions

sensitivity_analysis

Enable sensitivity testing

missing_data_handling

Missing data strategy

export_formats

Enable multi-format export

reporting_guidelines

Structured reporting standard

clinical_implementation

Create implementation recommendations

Value

A results object containing:

results$instructionsAnalysis instructions and overview
results$modelSummarySummary of the fitted model for nomogram
results$variableSelectionResults of variable selection process
results$modelPerformanceModel performance metrics
results$nomogramEquationMathematical equation underlying the nomogram
results$riskCalculatorTableReference table for risk calculation
results$riskGroupAnalysisRisk stratification analysis
results$calibrationResultsModel calibration analysis
results$discriminationResultsModel discrimination analysis
results$decisionCurveResultsClinical utility assessment
results$variableImportanceRelative importance of predictor variables
results$clinicalScenariosExample clinical scenarios with risk calculations
results$nomogramPlotVisual nomogram for risk assessment
results$calibrationPlotCalibration assessment visualization
results$discriminationPlotROC curves and discrimination assessment
results$decisionCurvePlotClinical utility visualization
results$riskGroupPlotSurvival curves by risk groups
results$variableImportancePlotVariable importance visualization
results$interactiveNomogramInteractive web-based nomogram calculator
results$validationReportComprehensive model validation report
results$implementationGuideGuidance for clinical implementation
results$reportingChecklistStructured reporting checklist
results$diagnosticsDiagnostic information and warnings

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$variableSelection$asDF

as.data.frame(results$variableSelection)

Examples

# \donttest{
# Example: Cox model nomogram
clinicalnomograms(
    data = clinical_data,
    time = survival_months,
    status = death_event,
    covariates = c("age", "stage", "grade"),
    nomogram_type = "survival_nomogram"
)
# }