Clinical Prediction Models & ML Interpretability
Source:R/clinicalprediction.h.R
clinicalprediction.RdUsage
clinicalprediction(
data,
outcome_var,
predictor_vars,
patient_id,
time_var,
event_var,
stratify_var,
model_type = "random_forest",
problem_type = "classification",
outcome_type = "binary",
feature_selection = TRUE,
selection_method = "recursive_fe",
feature_engineering = TRUE,
handle_missing = "mice_imputation",
train_proportion = 0.7,
validation_method = "cv_10fold",
hyperparameter_tuning = TRUE,
tuning_method = "random_search",
random_seed = 42,
interpretability = TRUE,
shap_analysis = TRUE,
lime_analysis = FALSE,
permutation_importance = TRUE,
partial_dependence = TRUE,
individual_explanations = FALSE,
n_explanations = 10,
performance_metrics = TRUE,
calibration_analysis = TRUE,
clinical_metrics = TRUE,
roc_analysis = TRUE,
threshold_optimization = TRUE,
compare_models = FALSE,
baseline_models = TRUE,
ensemble_models = FALSE,
risk_stratification = TRUE,
n_risk_groups = 3,
nomogram = TRUE,
decision_curve = TRUE,
external_validation = TRUE,
bootstrap_ci = 1000,
stability_analysis = TRUE,
bias_analysis = TRUE,
detailed_output = TRUE,
clinical_report = TRUE,
save_model = FALSE,
export_predictions = FALSE,
regulatory_documentation = TRUE
)Arguments
- data
the data as a data frame
- outcome_var
Target variable for prediction (binary, continuous, or survival)
- predictor_vars
Variables to use as predictors in the model
- patient_id
Patient identifier for tracking predictions
- time_var
Time to event variable for survival prediction models
- event_var
Event indicator for survival prediction models
- stratify_var
Variable for stratified sampling and validation
- model_type
Type of machine learning model to fit
- problem_type
Type of prediction problem
- outcome_type
Specific type of outcome variable
- feature_selection
Perform automated feature selection
- selection_method
Method for automatic feature selection
- feature_engineering
Perform automated feature engineering
- handle_missing
Method for handling missing data
- train_proportion
Proportion of data for training (70\
validation_methodMethod for model validation
hyperparameter_tuningPerform automated hyperparameter optimization
tuning_methodMethod for hyperparameter tuning
random_seedRandom seed for reproducibility
interpretabilityGenerate model interpretability analysis
shap_analysisGenerate SHAP (SHapley Additive exPlanations) values
lime_analysisGenerate LIME (Local Interpretable Model-agnostic Explanations)
permutation_importanceCalculate permutation feature importance
partial_dependenceGenerate partial dependence plots for key features
individual_explanationsExplain individual predictions using SHAP/LIME
n_explanationsNumber of individual predictions to explain in detail
performance_metricsCalculate comprehensive performance metrics
calibration_analysisAssess model calibration
clinical_metricsCalculate clinical decision analysis metrics
roc_analysisPerform ROC curve analysis with confidence intervals
threshold_optimizationOptimize prediction threshold for clinical use
compare_modelsCompare multiple model types
baseline_modelsInclude simple baseline models for comparison
ensemble_modelsCreate ensemble of best performing models
risk_stratificationCreate risk stratification groups
n_risk_groupsNumber of risk stratification groups (e.g., low/medium/high)
nomogramCreate clinical nomogram for risk calculation
decision_curvePerform decision curve analysis for clinical utility
external_validationPrepare model for external validation
bootstrap_ciNumber of bootstrap samples for confidence intervals
stability_analysisAssess model stability across different samples
bias_analysisAnalyze model bias across demographic groups
detailed_outputInclude detailed model diagnostics and explanations
clinical_reportGenerate clinical interpretation report
save_modelSave trained model for future predictions
export_predictionsExport individual predictions with probabilities
regulatory_documentationInclude documentation for regulatory submission
A results object containing:
results$overview | a table | ||||
results$dataset_info | a table | ||||
results$feature_selection_results | a table | ||||
results$feature_engineering_summary | a table | ||||
results$performance_summary | a table | ||||
results$classification_metrics | a table | ||||
results$survival_metrics | a table | ||||
results$feature_importance | a table | ||||
results$shap_summary | a table | ||||
results$individual_explanations | a table | ||||
results$model_comparison | a table | ||||
results$risk_stratification | a table | ||||
results$decision_curve_analysis | a table | ||||
results$cross_validation_results | a table | ||||
results$stability_analysis | a table | ||||
results$bias_fairness_analysis | a table | ||||
results$hyperparameter_results | a table | ||||
results$clinical_interpretation | a table | ||||
results$regulatory_summary | a table | ||||
results$roc_plot | an image | ||||
results$calibration_plot | an image | ||||
results$feature_importance_plot | an image | ||||
results$shap_summary_plot | an image | ||||
results$shap_dependence_plot | an image | ||||
results$decision_curve_plot | an image | ||||
results$risk_distribution_plot | an image | ||||
results$model_comparison_plot | an image | ||||
results$stability_plot | an image | ||||
results$nomogram_plot | an image |
asDF or as.data.frame. For example:results$overview$asDFas.data.frame(results$overview)
Develop and validate clinical prediction models using machine learning
algorithms
with interpretability analysis. Includes comprehensive model comparison,
feature
selection, cross-validation, and explainable AI through SHAP and LIME
methods.
Designed for clinical research applications with regulatory compliance
features
for model validation and documentation.
data('clinical_data')clinicalprediction(
data = clinical_data,
outcome_var = "mortality",
predictor_vars = c("age", "biomarker", "stage"),
model_type = "random_forest",
interpretability = TRUE,
validation_method = "cv_10fold"
)