Skip to contents

Comprehensive validation suite for clinical prediction models including bootstrap validation, cross-validation, model calibration assessment, and clinical performance evaluation designed for medical research and diagnostic test evaluation.

Usage

clinicalvalidation(
  data,
  outcome,
  outcomeLevel,
  predictors,
  time_variable = NULL,
  model_type = "logistic",
  model_formula = "",
  validation_method = "bootstrap",
  bootstrap_samples = 1000,
  cv_folds = 10,
  cv_repeats = 3,
  holdout_proportion = 0.25,
  stratified_sampling = TRUE,
  clinical_context = "diagnosis",
  prevalence_adjustment = FALSE,
  population_prevalence = 10,
  cost_matrix = "equal",
  fn_fp_cost_ratio = 2,
  performance_metrics = "all",
  confidence_level = 0.95,
  calibration_method = "all",
  calibration_bins = 10,
  compare_models = FALSE,
  comparison_models = "logistic_rf",
  show_model_summary = TRUE,
  show_performance_table = TRUE,
  show_calibration_plot = TRUE,
  show_roc_curve = TRUE,
  show_prc_curve = FALSE,
  show_validation_curves = FALSE,
  show_residual_plots = FALSE,
  show_clinical_interpretation = TRUE,
  export_results = FALSE,
  detailed_bootstrap = FALSE,
  missing_data_handling = "complete_cases",
  imputation_methods = 5,
  parallel_processing = FALSE,
  n_cores = 2,
  set_seed = TRUE,
  seed_value = 42
)

Arguments

data

The data as a data frame for clinical model validation.

outcome

.

outcomeLevel

.

predictors

.

time_variable

.

model_type

.

model_formula

.

validation_method

.

bootstrap_samples

.

cv_folds

.

cv_repeats

.

holdout_proportion

.

stratified_sampling

.

clinical_context

.

prevalence_adjustment

.

population_prevalence

.

cost_matrix

.

fn_fp_cost_ratio

.

performance_metrics

.

confidence_level

.

calibration_method

.

calibration_bins

.

compare_models

.

comparison_models

.

show_model_summary

.

show_performance_table

.

show_calibration_plot

.

show_roc_curve

.

show_prc_curve

Display Precision-Recall curve analysis. Recommended for imbalanced datasets where ROC curves may be misleading (Saito & Rehmsmeier, 2015).

show_validation_curves

.

show_residual_plots

.

show_clinical_interpretation

.

export_results

.

detailed_bootstrap

.

missing_data_handling

.

imputation_methods

.

parallel_processing

.

n_cores

.

set_seed

.

seed_value

.

Value

A results object containing:

results$instructionsa html
results$modelsummarya html
results$performancetablea table
results$bootstrapresultsa table
results$calibrationtablea table
results$brierscorea table
results$modelcomparisona table
results$costreductiona table
results$validationcurvesan image
results$calibrationplotan image
results$roccurvean image
results$prccurvean image
results$residualplotsan image
results$clinicalinterpretationa html
results$validationreporta html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$performancetable$asDF

as.data.frame(results$performancetable)

Examples

# Clinical model validation with bootstrap
clinical_validation(
    data = clinical_data,
    outcome = "diagnosis",
    predictors = c("biomarker1", "biomarker2", "age", "gender"),
    model_type = "logistic",
    validation_method = "bootstrap",
    bootstrap_samples = 1000,
    clinical_context = "diagnosis"
)