Comprehensive validation suite for clinical prediction models including bootstrap validation, cross-validation, model calibration assessment, and clinical performance evaluation designed for medical research and diagnostic test evaluation.
Usage
clinicalvalidation(
  data,
  outcome,
  outcomeLevel,
  predictors,
  time_variable = NULL,
  model_type = "logistic",
  model_formula = "",
  validation_method = "bootstrap",
  bootstrap_samples = 1000,
  cv_folds = 10,
  cv_repeats = 3,
  holdout_proportion = 0.25,
  stratified_sampling = TRUE,
  clinical_context = "diagnosis",
  prevalence_adjustment = FALSE,
  population_prevalence = 10,
  cost_matrix = "equal",
  fn_fp_cost_ratio = 2,
  performance_metrics = "all",
  confidence_level = 0.95,
  calibration_method = "all",
  calibration_bins = 10,
  compare_models = FALSE,
  comparison_models = "logistic_rf",
  show_model_summary = TRUE,
  show_performance_table = TRUE,
  show_calibration_plot = TRUE,
  show_roc_curve = TRUE,
  show_prc_curve = FALSE,
  show_validation_curves = FALSE,
  show_residual_plots = FALSE,
  show_clinical_interpretation = TRUE,
  export_results = FALSE,
  detailed_bootstrap = FALSE,
  missing_data_handling = "complete_cases",
  imputation_methods = 5,
  parallel_processing = FALSE,
  n_cores = 2,
  set_seed = TRUE,
  seed_value = 42
)Arguments
- data
- The data as a data frame for clinical model validation. 
- outcome
- . 
- outcomeLevel
- . 
- predictors
- . 
- time_variable
- . 
- model_type
- . 
- model_formula
- . 
- validation_method
- . 
- bootstrap_samples
- . 
- cv_folds
- . 
- cv_repeats
- . 
- holdout_proportion
- . 
- stratified_sampling
- . 
- clinical_context
- . 
- prevalence_adjustment
- . 
- population_prevalence
- . 
- cost_matrix
- . 
- fn_fp_cost_ratio
- . 
- performance_metrics
- . 
- confidence_level
- . 
- calibration_method
- . 
- calibration_bins
- . 
- compare_models
- . 
- comparison_models
- . 
- show_model_summary
- . 
- show_performance_table
- . 
- show_calibration_plot
- . 
- show_roc_curve
- . 
- show_prc_curve
- Display Precision-Recall curve analysis. Recommended for imbalanced datasets where ROC curves may be misleading (Saito & Rehmsmeier, 2015). 
- show_validation_curves
- . 
- show_residual_plots
- . 
- show_clinical_interpretation
- . 
- export_results
- . 
- detailed_bootstrap
- . 
- missing_data_handling
- . 
- imputation_methods
- . 
- parallel_processing
- . 
- n_cores
- . 
- set_seed
- . 
- seed_value
- . 
Value
A results object containing:
| results$instructions | a html | ||||
| results$modelsummary | a html | ||||
| results$performancetable | a table | ||||
| results$bootstrapresults | a table | ||||
| results$calibrationtable | a table | ||||
| results$brierscore | a table | ||||
| results$modelcomparison | a table | ||||
| results$costreduction | a table | ||||
| results$validationcurves | an image | ||||
| results$calibrationplot | an image | ||||
| results$roccurve | an image | ||||
| results$prccurve | an image | ||||
| results$residualplots | an image | ||||
| results$clinicalinterpretation | a html | ||||
| results$validationreport | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$performancetable$asDF
as.data.frame(results$performancetable)
Examples
# Clinical model validation with bootstrap
clinical_validation(
    data = clinical_data,
    outcome = "diagnosis",
    predictors = c("biomarker1", "biomarker2", "age", "gender"),
    model_type = "logistic",
    validation_method = "bootstrap",
    bootstrap_samples = 1000,
    clinical_context = "diagnosis"
)