Skip to contents

Interactive clinical prediction model validation with real-time parameter validation, intelligent defaults, and guided workflows. Features automatic parameter correction, clinical scenario presets, and dynamic threshold optimization for medical research and diagnostic applications.

Usage

clinicalvalidationinteractive(
  data,
  outcome,
  outcomeLevel,
  predictors,
  time_variable = NULL,
  clinical_preset = "custom",
  model_type = "logistic",
  validation_method = "bootstrap",
  bootstrap_samples = 1000,
  cv_folds = 10,
  cv_repeats = 3,
  holdout_proportion = 0.25,
  stratified_sampling = TRUE,
  clinical_context = "diagnosis",
  prevalence_adjustment = FALSE,
  population_prevalence = 10,
  cost_matrix = "equal",
  fn_fp_cost_ratio = 2,
  min_sensitivity = 0.8,
  min_specificity = 0.8,
  min_ppv = 0.7,
  min_npv = 0.9,
  auto_optimize_threshold = FALSE,
  optimization_metric = "youden",
  performance_metrics = "all",
  confidence_level = 0.95,
  show_realtime_metrics = TRUE,
  show_parameter_warnings = TRUE,
  show_clinical_guidance = TRUE,
  show_model_summary = TRUE,
  show_performance_table = TRUE,
  show_calibration_plot = TRUE,
  show_roc_curve = TRUE,
  show_threshold_optimization = FALSE,
  show_clinical_interpretation = TRUE,
  missing_data_handling = "complete_cases",
  set_seed = TRUE,
  seed_value = 42
)

Arguments

data

The data as a data frame for clinical model validation.

outcome

.

outcomeLevel

.

predictors

.

time_variable

.

clinical_preset

.

model_type

.

validation_method

.

bootstrap_samples

.

cv_folds

.

cv_repeats

.

holdout_proportion

.

stratified_sampling

.

clinical_context

.

prevalence_adjustment

.

population_prevalence

.

cost_matrix

.

fn_fp_cost_ratio

.

min_sensitivity

.

min_specificity

.

min_ppv

.

min_npv

.

auto_optimize_threshold

.

optimization_metric

.

performance_metrics

.

confidence_level

.

show_realtime_metrics

.

show_parameter_warnings

.

show_clinical_guidance

.

show_model_summary

.

show_performance_table

.

show_calibration_plot

.

show_roc_curve

.

show_threshold_optimization

.

show_clinical_interpretation

.

missing_data_handling

.

set_seed

.

seed_value

.

Value

A results object containing:

results$modelSummarySummary of the fitted model
results$validationResultsComprehensive validation performance metrics with confidence intervals
results$performanceWarningsReal-time warnings and clinical recommendations
results$prevalenceAnalysisImpact of disease prevalence on predictive values
results$thresholdOptimizationOptimal decision thresholds for different clinical scenarios
results$calibrationAssessmentCalibration performance metrics
results$clinicalGuidelinesEvidence-based clinical interpretation and recommendations
results$rocCurveROC curve showing optimal decision thresholds
results$calibrationPlotModel calibration assessment plot
results$thresholdPlotPerformance metrics across decision thresholds
results$validationCurvesLearning curves showing model performance vs sample size
results$realtimeMetricsDynamic performance metric updates
results$interactiveGuidanceDynamic clinical decision guidance
results$parameterValidationReal-time parameter validation and warnings
results$exportSummaryComprehensive validation summary for clinical reporting

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelSummary$asDF

as.data.frame(results$modelSummary)

Examples

# Interactive clinical validation with presets
clinical_validation_interactive(
    data = clinical_data,
    outcome = "diagnosis",
    predictors = c("biomarker1", "biomarker2", "age"),
    clinical_preset = "diagnostic_biomarker",
    auto_optimize = TRUE
)