Conditional Generalized Estimating Equations for analyzing gap times between recurrent events. This analysis models the time between consecutive event occurrences conditional on previous event history, accounting for within-subject correlation and providing robust population-average estimates of covariate effects on inter-event times.
Usage
conditionalgee(
  data,
  subjectID,
  gap_time,
  event,
  event_number,
  covariates,
  time_varying_covariates,
  baseline_covariates,
  distribution_family = "weibull",
  correlation_structure = "exchangeable",
  link_function = "log",
  conditioning_set = "previous_gap",
  confidence_level = 0.95,
  max_iterations = 200,
  tolerance = 1e-06,
  robust_se = TRUE,
  include_diagnostics = TRUE,
  include_predictions = TRUE,
  plotGapTimes = TRUE,
  plotCorrelation = TRUE,
  plotResiduals = FALSE,
  plotPredictions = FALSE,
  showEducation = TRUE,
  showInterpretation = TRUE,
  exportResults = FALSE
)Arguments
- data
- . 
- subjectID
- . 
- gap_time
- . 
- event
- . 
- event_number
- . 
- covariates
- . 
- time_varying_covariates
- . 
- baseline_covariates
- . 
- distribution_family
- . 
- correlation_structure
- . 
- link_function
- . 
- conditioning_set
- . 
- confidence_level
- . 
- max_iterations
- . 
- tolerance
- . 
- robust_se
- . 
- include_diagnostics
- . 
- include_predictions
- . 
- plotGapTimes
- . 
- plotCorrelation
- . 
- plotResiduals
- . 
- plotPredictions
- . 
- showEducation
- . 
- showInterpretation
- . 
- exportResults
- . 
Value
A results object containing:
| results$todo | a html | ||||
| results$modelfit | a table | ||||
| results$coefficients | a table | ||||
| results$correlationStructure | a table | ||||
| results$modelDiagnostics | a table | ||||
| results$gapTimePredictions | a table | ||||
| results$educationalContent | a html | ||||
| results$interpretationContent | a html | ||||
| results$gapTimesPlot | an image | ||||
| results$correlationPlot | an image | ||||
| results$residualsPlot | an image | ||||
| results$predictionsPlot | an image | ||||
| results$exportTable | a table | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelfit$asDF
as.data.frame(results$modelfit)
Examples
data('histopathology', package='ClinicoPath')