Implements robust Cox proportional hazards regression models that are resistant to outliers and model misspecification. Provides multiple robust estimation methods including Huber M-estimation, bounded influence functions, and weighted partial likelihood approaches for reliable survival analysis in the presence of data anomalies.
Usage
coxrobust(
  data,
  elapsedtime,
  outcome,
  covariates,
  outcomeLevel = "1",
  robust_method = "huber",
  tuning_constant = 1.345,
  efficiency_target = 0.95,
  max_iterations = 100,
  convergence_tolerance = 1e-06,
  outlier_detection = TRUE,
  outlier_threshold = 3,
  stratify_variable,
  weights_variable,
  bootstrap_ci = FALSE,
  bootstrap_samples = 500,
  confidence_level = 0.95,
  show_model_summary = TRUE,
  show_coefficients = TRUE,
  show_outliers = TRUE,
  show_influence = TRUE,
  show_comparison = TRUE,
  show_residual_plots = TRUE,
  show_influence_plots = TRUE,
  show_weight_plots = TRUE,
  show_survival_plots = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)Arguments
- data
- the data as a data frame 
- elapsedtime
- Survival time or follow-up duration variable 
- outcome
- Event indicator variable (0/1, FALSE/TRUE, or factor) 
- covariates
- Predictor variables for the Cox model 
- outcomeLevel
- Level of outcome variable indicating event occurrence 
- robust_method
- Robust estimation method to use 
- tuning_constant
- Tuning constant for robust estimation (method-specific) 
- efficiency_target
- Target efficiency relative to standard Cox model 
- max_iterations
- Maximum number of iterations for robust estimation 
- convergence_tolerance
- Convergence tolerance for parameter estimation 
- outlier_detection
- Perform automatic outlier detection and flagging 
- outlier_threshold
- Threshold for outlier detection (in standard deviations) 
- stratify_variable
- Variable for stratified analysis 
- weights_variable
- Optional observation weights 
- bootstrap_ci
- Compute bootstrap confidence intervals 
- bootstrap_samples
- Number of bootstrap samples for CI estimation 
- confidence_level
- Confidence level for intervals 
- show_model_summary
- Display comprehensive model summary 
- show_coefficients
- Display coefficient estimates table 
- show_outliers
- Display outlier detection results 
- show_influence
- Display influence diagnostics 
- show_comparison
- Compare robust vs standard Cox models 
- show_residual_plots
- Display residual diagnostic plots 
- show_influence_plots
- Display influence diagnostic plots 
- show_weight_plots
- Display robust weight distributions 
- show_survival_plots
- Display survival curves 
- showSummaries
- Generate natural language summaries 
- showExplanations
- Show detailed methodology explanations 
Value
A results object containing:
| results$modelSummary | a table | ||||
| results$coefficients | a table | ||||
| results$outlierAnalysis | a table | ||||
| results$influenceMeasures | a table | ||||
| results$modelComparison | a table | ||||
| results$convergenceInfo | a table | ||||
| results$residualPlots | an image | ||||
| results$influencePlots | an image | ||||
| results$weightPlots | an image | ||||
| results$survivalPlots | an image | ||||
| results$outlierPlots | an image | ||||
| results$comparisonPlots | an image | ||||
| results$summaryTable | a html | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSummary$asDF
as.data.frame(results$modelSummary)