Skip to contents

Cure models for analyzing survival data with a cured fraction of long-term survivors. Implements mixture cure models and non-mixture cure models for oncology research.

Usage

curemodels(
  data,
  time,
  status,
  predictors,
  model_type = "mixture",
  cure_link = "logit",
  survival_dist = "weibull",
  bootstrap_ci = FALSE,
  n_bootstrap = 1000,
  cure_threshold = 60,
  plot_cure_fraction = TRUE,
  plot_survival = TRUE,
  goodness_of_fit = TRUE,
  sensitivity_analysis = FALSE
)

Arguments

data

The data as a data frame.

time

Follow-up time variable

status

Event status variable

predictors

Predictor variables for the model

model_type

Type of cure model: mixture, non-mixture, or both

Link function for the cure probability model

survival_dist

Distribution for modeling survival of uncured patients

bootstrap_ci

Use bootstrap for confidence interval estimation

n_bootstrap

Number of bootstrap samples

cure_threshold

Time threshold for defining cured patients

plot_cure_fraction

Generate cure fraction plot

plot_survival

Generate survival curve plots

goodness_of_fit

Conduct goodness of fit assessment

sensitivity_analysis

Conduct sensitivity analysis

Value

A results object containing:

results$todoa html
results$warningsa html
results$summarya html
results$modelTablea table
results$cureTablea table
results$cureFractionPlotan image
results$survivalPlotan image
results$goodnessOfFita table
results$sensitivityAnalysisa html
results$modelComparisona table
results$interpretationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelTable$asDF

as.data.frame(results$modelTable)

Examples

# \donttest{
# Example usage
curemodels(
    data = cancer_data,
    time = followup_time,
    status = death_status,
    predictors = c(age, stage, treatment),
    model_type = "mixture"
)
# }