Function for combining multiple Medical Decision Tests and evaluating their performance. Calculate sensitivity, specificity, positive predictive value, negative predictive value for combined tests using different combination rules.
Usage
decisioncombine(
data,
gold,
goldPositive,
test1,
test1Positive,
test2,
test2Positive,
test3,
test3Positive,
combRule = "any",
pp = FALSE,
pprob = 0.3,
od = FALSE,
fnote = FALSE,
ci = FALSE,
fagan = FALSE,
showIndividual = TRUE
)
Arguments
- data
The data as a data frame.
- gold
.
- goldPositive
.
- test1
.
- test1Positive
.
- test2
.
- test2Positive
.
- test3
.
- test3Positive
.
- combRule
Rule for combining test results. "any" means positive if any test is positive (OR), "all" means positive only if all tests are positive (AND), and "majority" means positive if more than half of tests are positive.
- pp
.
- pprob
Prior probability (disease prevalence in the community). Requires a value between 0.001 and 0.999, default 0.300.
- od
Boolean selection whether to show frequency tables. Default is 'false'.
- fnote
.
- ci
.
- fagan
.
- showIndividual
.
Value
A results object containing:
results$text1 | a preformatted | ||||
results$text2 | a html | ||||
results$cTable | a table | ||||
results$indTable1 | a table | ||||
results$indTable2 | a table | ||||
results$indTable3 | a table | ||||
results$nTable | a table | ||||
results$ratioTable | a table | ||||
results$epirTable_ratio | a table | ||||
results$epirTable_number | a table | ||||
results$plot1 | an image |
Tables can be converted to data frames with asDF
or as.data.frame
. For example:
results$cTable$asDF
as.data.frame(results$cTable)