Skip to contents

Comprehensive meta-analysis of diagnostic test accuracy studies designed for pathology research. Performs bivariate random-effects modeling, HSROC analysis, meta-regression, and publication bias assessment for AI algorithm validation and biomarker diagnostic accuracy synthesis.

Usage

diagnosticmeta(
  data,
  study,
  true_positives,
  false_positives,
  false_negatives,
  true_negatives,
  covariate,
  bivariate_analysis = TRUE,
  hsroc_analysis = FALSE,
  meta_regression = FALSE,
  heterogeneity_analysis = FALSE,
  publication_bias = FALSE,
  confidence_level = 95,
  method = "reml",
  forest_plot = FALSE,
  sroc_plot = FALSE,
  funnel_plot = FALSE,
  show_individual_studies = FALSE,
  show_interpretation = FALSE,
  show_methodology = FALSE,
  show_analysis_summary = FALSE,
  color_palette = "standard",
  show_plot_explanations = FALSE
)

Arguments

data

the data as a data frame

study

Variable containing unique study identifiers

true_positives

Number of true positive results in each study

false_positives

Number of false positive results in each study

false_negatives

Number of false negative results in each study

true_negatives

Number of true negative results in each study

covariate

Optional covariate for meta-regression analysis

bivariate_analysis

Perform bivariate random-effects meta-analysis

hsroc_analysis

Perform hierarchical summary ROC (HSROC) analysis

meta_regression

Perform meta-regression with specified covariate

heterogeneity_analysis

Perform heterogeneity analysis including I-squared and Q statistics

publication_bias

Assess publication bias using Deeks' funnel plot test

confidence_level

Confidence level for meta-analysis results

method

Method for meta-analysis estimation

forest_plot

Generate forest plot for sensitivity and specificity

sroc_plot

Generate summary receiver operating characteristic plot

funnel_plot

Generate funnel plot for publication bias assessment

show_individual_studies

Display results for individual studies in summary tables

show_interpretation

Display clinical interpretation guidelines and recommendations

show_methodology

Display detailed methodology and statistical approach information

show_analysis_summary

Display natural language summary of analysis results

color_palette

Color palette for all plots - choose color-blind safe options for accessibility

show_plot_explanations

Display detailed explanations for all plots including interpretation guidance

Value

A results object containing:

results$welcomea html
results$instructionsa html
results$summarya html
results$abouta html
results$bivariateresultsa table
results$hsrocresultsa table
results$heterogeneitya table
results$metaregressiona table
results$publicationbiasa table
results$individualstudiesa table
results$forestplotan image
results$srocplotan image
results$funnelplotan image
results$interpretationa html
results$forestplot_explanationa html
results$srocplot_explanationa html
results$funnelplot_explanationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$bivariateresults$asDF

as.data.frame(results$bivariateresults)

Examples

data('diagnostic_studies')

diagnosticmeta(data = diagnostic_studies,
              study = study_name,
              true_positives = tp,
              false_positives = fp,
              false_negatives = fn,
              true_negatives = tn)