Comprehensive meta-analysis of diagnostic test accuracy studies designed for pathology research. Performs bivariate random-effects modeling, HSROC analysis, meta-regression, and publication bias assessment for AI algorithm validation and biomarker diagnostic accuracy synthesis.
Usage
diagnosticmeta(
  data,
  study,
  true_positives,
  false_positives,
  false_negatives,
  true_negatives,
  covariate,
  bivariate_analysis = TRUE,
  hsroc_analysis = FALSE,
  meta_regression = FALSE,
  heterogeneity_analysis = FALSE,
  publication_bias = FALSE,
  confidence_level = 95,
  method = "reml",
  forest_plot = FALSE,
  sroc_plot = FALSE,
  funnel_plot = FALSE,
  show_individual_studies = FALSE,
  show_interpretation = FALSE,
  show_methodology = FALSE,
  show_analysis_summary = FALSE,
  color_palette = "standard",
  show_plot_explanations = FALSE
)Arguments
- data
- the data as a data frame 
- study
- Variable containing unique study identifiers 
- true_positives
- Number of true positive results in each study 
- false_positives
- Number of false positive results in each study 
- false_negatives
- Number of false negative results in each study 
- true_negatives
- Number of true negative results in each study 
- covariate
- Optional covariate for meta-regression analysis 
- bivariate_analysis
- Perform bivariate random-effects meta-analysis 
- hsroc_analysis
- Perform hierarchical summary ROC (HSROC) analysis 
- meta_regression
- Perform meta-regression with specified covariate 
- heterogeneity_analysis
- Perform heterogeneity analysis including I-squared and Q statistics 
- publication_bias
- Assess publication bias using Deeks' funnel plot test 
- confidence_level
- Confidence level for meta-analysis results 
- method
- Method for meta-analysis estimation 
- forest_plot
- Generate forest plot for sensitivity and specificity 
- sroc_plot
- Generate summary receiver operating characteristic plot 
- funnel_plot
- Generate funnel plot for publication bias assessment 
- show_individual_studies
- Display results for individual studies in summary tables 
- show_interpretation
- Display clinical interpretation guidelines and recommendations 
- show_methodology
- Display detailed methodology and statistical approach information 
- show_analysis_summary
- Display natural language summary of analysis results 
- color_palette
- Color palette for all plots - choose color-blind safe options for accessibility 
- show_plot_explanations
- Display detailed explanations for all plots including interpretation guidance 
Value
A results object containing:
| results$welcome | a html | ||||
| results$instructions | a html | ||||
| results$summary | a html | ||||
| results$about | a html | ||||
| results$bivariateresults | a table | ||||
| results$hsrocresults | a table | ||||
| results$heterogeneity | a table | ||||
| results$metaregression | a table | ||||
| results$publicationbias | a table | ||||
| results$individualstudies | a table | ||||
| results$forestplot | an image | ||||
| results$srocplot | an image | ||||
| results$funnelplot | an image | ||||
| results$interpretation | a html | ||||
| results$forestplot_explanation | a html | ||||
| results$srocplot_explanation | a html | ||||
| results$funnelplot_explanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$bivariateresults$asDF
as.data.frame(results$bivariateresults)
Examples
data('diagnostic_studies')
diagnosticmeta(data = diagnostic_studies,
              study = study_name,
              true_positives = tp,
              false_positives = fp,
              false_negatives = fn,
              true_negatives = tn)