Performs direct binomial regression modeling for cumulative incidence functions in competing risks analysis using the timereg package. This method provides direct modeling of cumulative incidence without proportional subdistribution hazards assumptions.
Usage
directbinomial(
  data,
  time,
  event,
  covs,
  eventOfInterest = 1,
  times = "1, 3, 5",
  conf = 0.95,
  residuals = FALSE,
  predictions = TRUE,
  bootstrap = FALSE,
  nboot = 500,
  showModel = TRUE,
  showEducational = TRUE,
  plotCIF = TRUE,
  plotResiduals = FALSE
)Arguments
- data
- The data as a data frame. 
- time
- Follow-up time variable 
- event
- Event type variable (0=censored, 1=event of interest, 2=competing event, etc.) 
- covs
- Covariates to include in the model 
- eventOfInterest
- Numeric code for the event of interest (primary event) 
- times
- Comma-separated list of time points for cumulative incidence prediction 
- conf
- Confidence level for confidence intervals 
- residuals
- Display model residuals and goodness-of-fit statistics 
- predictions
- Display predicted cumulative incidence at specified time points 
- bootstrap
- Use bootstrap methods for confidence interval estimation 
- nboot
- Number of bootstrap samples (when bootstrap is enabled) 
- showModel
- Display detailed model summary and parameter estimates 
- showEducational
- Display educational information about direct binomial regression 
- plotCIF
- Display cumulative incidence function plots 
- plotResiduals
- Display residual plots for model diagnostics 
Value
A results object containing:
| results$todo | a html | ||||
| results$modelSummary | a table | ||||
| results$educationalInfo | a html | ||||
| results$coefficientsTable | a table | ||||
| results$cumulativeIncidenceTable | a table | ||||
| results$covariateEffectsTable | a table | ||||
| results$goodnessOfFit | a table | ||||
| results$residualAnalysis | a html | ||||
| results$methodsInfo | a html | ||||
| results$cifPlot | an image | ||||
| results$residualPlot | an image | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSummary$asDF
as.data.frame(results$modelSummary)