Skip to contents

Dynamic prediction models provide updated survival predictions as new longitudinal data becomes available. This approach is particularly valuable when biomarker values change over time and influence prognosis. The analysis implements various dynamic prediction methods including landmark approaches, joint modeling, and dynamic Cox models, allowing for real-time risk assessment and personalized medicine applications.

Usage

dynamicprediction(
  data,
  elapsedtime,
  outcome,
  baseline,
  longitudinal,
  time_var,
  subject_id,
  outcomeLevel = "1",
  prediction_horizon = 24,
  prediction_method = "landmark",
  landmark_times = "6,12,18",
  joint_model_type = "linear_mixed",
  biomarker_model = "linear",
  association_structure = "current_value",
  confidence_level = 0.95,
  mc_samples = 500,
  window_width = 6,
  show_prediction_table = TRUE,
  show_accuracy_metrics = TRUE,
  show_biomarker_effects = TRUE,
  show_model_comparison = FALSE,
  prediction_curves = TRUE,
  biomarker_trajectory = TRUE,
  accuracy_plot = FALSE,
  risk_stratification = FALSE,
  showSummaries = TRUE,
  showExplanations = TRUE
)

Arguments

data

the data as a data frame

elapsedtime

Time to event or censoring

outcome

Event indicator (1 = event, 0 = censored)

baseline

Baseline covariates that don't change over time

longitudinal

Time-varying covariates (longitudinal biomarkers)

time_var

Time of longitudinal measurements

subject_id

Subject identifier for longitudinal data

outcomeLevel

Level indicating event occurrence

prediction_horizon

Time horizon for dynamic predictions (in time units)

prediction_method

Method for dynamic prediction

landmark_times

Comma-separated list of landmark time points for dynamic updating

joint_model_type

Type of joint model for longitudinal and survival data

biomarker_model

Model for longitudinal biomarker trajectory

association_structure

How longitudinal process associates with survival

confidence_level

Confidence level for prediction intervals

mc_samples

Number of Monte Carlo samples for prediction uncertainty

window_width

Width of prediction window for dynamic updating

show_prediction_table

Display table of dynamic predictions

show_accuracy_metrics

Display prediction accuracy assessment

show_biomarker_effects

Display estimated effects of longitudinal biomarkers

show_model_comparison

Compare different prediction methods

prediction_curves

Display dynamic prediction curves over time

biomarker_trajectory

Display individual biomarker trajectories

accuracy_plot

Display prediction accuracy over time

risk_stratification

Display risk stratification based on dynamic predictions

showSummaries

Show comprehensive analysis summaries

showExplanations

Show detailed methodology explanations

Value

A results object containing:

results$todoa html
results$predictionSummarya table
results$accuracyMetricsa table
results$biomarkerEffectsa table
results$modelComparisona table
results$landmarkAnalysisa table
results$jointModelResultsa table
results$trajectoryParametersa table
results$methodologyExplanationa html
results$analysisSummarya html
results$predictionCurvesan image
results$biomarkerTrajectoryan image
results$accuracyPlotan image
results$riskStratificationan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$predictionSummary$asDF

as.data.frame(results$predictionSummary)

Examples