Skip to contents

Enhanced cross-tabulation analysis using the danchaltiel/crosstable package for advanced clinical research functionality.

Usage

enhancedcrosstable(
  data,
  vars,
  by_var,
  percent_pattern = "col_percent",
  show_total = TRUE,
  show_total_row = TRUE,
  test_auto = TRUE,
  effect_size = FALSE,
  funs_arg = "mean_sd",
  digits = 2,
  use_labels = TRUE,
  exclude_missing = TRUE,
  show_n_col = TRUE,
  margin = "column",
  cor_method = "pearson",
  showNA = "no",
  compact = FALSE,
  export_format = "html",
  show_interpretation = TRUE
)

Arguments

data

The data as a data frame.

vars

Variables to include in the cross-tabulation (table rows).

by_var

The grouping variable for cross-tabulation (table columns).

percent_pattern

Pattern for displaying counts and percentages.

show_total

Whether to include a total column.

show_total_row

Whether to include a total row.

test_auto

Whether to automatically select and perform statistical tests.

effect_size

Whether to calculate effect sizes (Cramer's V, odds ratios, etc.).

funs_arg

Function for summarizing continuous variables.

digits

Number of decimal places for numeric results.

use_labels

Whether to use variable labels if available.

exclude_missing

Whether to exclude missing values from calculations.

show_n_col

Whether to show sample sizes for each column.

margin

Margin for calculating percentages.

cor_method

Correlation method for continuous variables.

showNA

Whether and when to show missing values in the table.

compact

Whether to use compact table formatting.

export_format

Format for table export and display.

show_interpretation

Whether to include interpretation of statistical results.

Value

A results object containing:

results$instructionsa html
results$crosstable_maina html
results$statistics_tablea html
results$effect_sizesa html
results$interpretationa html
results$export_dataa html
results$summary_statsa html

Examples

# \donttest{
# Example usage:
library(crosstable)
# Enhanced crosstable with tidyselect
crosstable(data, c(var1, var2), by = group_var)
# Formula interface
crosstable(data, c(age_group = age > 65), by = treatment)
# }