Epidemiological survival analysis for population-based studies and observational research. Provides specialized methods for cohort survival analysis, case-cohort designs, and population attributable risk calculation. Includes adjustment for sampling schemes, competing mortality, and population stratification. Designed for epidemiological research including cancer registry studies, cohort studies, and population surveillance.
Usage
epidemiosurvival(
  data,
  time_var,
  event_var,
  exposure_var,
  age_var,
  calendar_time,
  population_weights,
  subcohort_indicator,
  stratification_vars,
  competing_events,
  analysis_type = "cohort_survival",
  cohort_design = "prospective",
  sampling_method = "simple_random",
  survival_method = "kaplan_meier",
  regression_method = "cox_robust",
  age_standardization = "none",
  reference_population = "study_population",
  age_groups = "0-49,50-59,60-69,70+",
  calendar_periods = "1990-1999,2000-2009,2010-2019",
  subcohort_size = 1000,
  case_cohort_method = "prentice",
  par_method = "levin",
  confidence_level = 0.95,
  cohort_life_tables = TRUE,
  competing_risks_analysis = FALSE,
  age_period_cohort_effects = FALSE,
  population_impact_measures = FALSE,
  survival_disparities = FALSE,
  trend_analysis = FALSE,
  excess_mortality = FALSE,
  standardized_mortality_ratio = FALSE,
  survival_curves = TRUE,
  cumulative_incidence_plots = FALSE,
  age_specific_rates = FALSE,
  trend_plots = FALSE,
  forest_plots = FALSE
)Arguments
- data
- the data as a data frame 
- time_var
- Follow-up time (years, months, or days) 
- event_var
- Event indicator (1=event, 0=censored) 
- exposure_var
- Primary exposure of interest for epidemiological analysis 
- age_var
- Age at study entry or baseline (years) 
- calendar_time
- Calendar year or period of study entry 
- population_weights
- Sampling or population weights for complex survey designs 
- subcohort_indicator
- Subcohort membership indicator for case-cohort designs 
- stratification_vars
- Variables for stratified analysis (e.g., sex, region, socioeconomic status) 
- competing_events
- Competing event indicators for competing mortality analysis 
- analysis_type
- Type of epidemiological survival analysis 
- cohort_design
- Type of cohort study design 
- sampling_method
- Sampling method used in the study design 
- survival_method
- Method for survival function estimation 
- regression_method
- Regression method for hazard estimation 
- age_standardization
- Method for age standardization 
- reference_population
- Reference population for standardization (study_population, external, or custom) 
- age_groups
- Age group categories for stratified analysis (comma-separated) 
- calendar_periods
- Calendar period categories for period analysis 
- subcohort_size
- Size of subcohort for case-cohort analysis 
- case_cohort_method
- Estimation method for case-cohort designs 
- par_method
- Method for population attributable risk calculation 
- confidence_level
- Confidence level for intervals 
- cohort_life_tables
- Generate cohort life tables 
- competing_risks_analysis
- Analyze competing mortality risks 
- age_period_cohort_effects
- Estimate age, period, and cohort effects 
- population_impact_measures
- Calculate population impact measures (PAR, PAF, NNT) 
- survival_disparities
- Analyze survival disparities by demographic factors 
- trend_analysis
- Analyze temporal trends in survival 
- excess_mortality
- Calculate excess mortality compared to general population 
- standardized_mortality_ratio
- Calculate SMR with confidence intervals 
- survival_curves
- Generate survival curves by exposure groups 
- cumulative_incidence_plots
- Plot cumulative incidence functions 
- age_specific_rates
- Plot age-specific mortality/incidence rates 
- trend_plots
- Plot survival trends over calendar time 
- forest_plots
- Generate forest plots for subgroup analyses 
Value
A results object containing:
| results$instructions | a html | ||||
| results$cohort_summary | a table | ||||
| results$survival_estimates | a table | ||||
| results$hazard_ratios | a table | ||||
| results$population_attributable_risk | a table | ||||
| results$age_standardized_rates | a table | ||||
| results$life_table | a table | ||||
| results$case_cohort_results | a table | ||||
| results$competing_mortality | a table | ||||
| results$apc_effects | a table | ||||
| results$survival_disparities_table | a table | ||||
| results$trend_analysis_table | a table | ||||
| results$excess_mortality_table | a table | ||||
| results$survival_curves_plot | an image | ||||
| results$cumulative_incidence_plot | an image | ||||
| results$age_specific_rates_plot | an image | ||||
| results$trend_plot | an image | ||||
| results$forest_plot | an image | ||||
| results$epidemiological_interpretation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$cohort_summary$asDF
as.data.frame(results$cohort_summary)
Examples
data('population_cohort')
epidemiosurvival(
    data = population_cohort,
    time_var = "followup_time",
    event_var = "death",
    exposure_var = "smoking_status",
    age_var = "age_at_entry",
    calendar_time = "entry_year",
    population_weights = "sampling_weight"
)