Comprehensive explainable AI toolkit for interpreting machine learning models in medical and clinical applications. Provides attention maps, feature importance, SHAP values, and other interpretability methods.
Usage
explainableai(
data,
analysis_type = "feature_importance",
features,
target_var,
model_predictions,
image_paths,
attention_maps,
shap_method = "kernel_explainer",
lime_method = "tabular",
n_samples = 100,
n_features = 20,
plot_type = "summary",
overlay_original = TRUE,
confidence_level = 0.95,
background_samples = 100,
perturbation_method = "random",
clustering_method = "none",
interaction_analysis = FALSE,
local_explanations = TRUE,
global_explanations = TRUE,
save_explanations = FALSE,
explanation_path = "",
attention_threshold = 0.1,
colormap = "viridis"
)Arguments
- data
the data as a data frame
- analysis_type
type of explainability analysis to perform
- features
features/variables for importance analysis
- target_var
target variable or model predictions
- model_predictions
variable containing model predictions or probabilities
- image_paths
variable containing paths to image files
- attention_maps
variable containing attention map data or file paths
- shap_method
SHAP explainer method based on model type
- lime_method
LIME explanation method for different data types
- n_samples
number of samples to use for explanation analysis
- n_features
number of top important features to display
- plot_type
type of visualization for explanations
- overlay_original
overlay attention maps on original images
- confidence_level
confidence level for statistical intervals
- background_samples
number of background samples for SHAP baseline
- perturbation_method
method for perturbing features in permutation importance
- clustering_method
method for grouping similar features
- interaction_analysis
analyze pairwise feature interactions
- local_explanations
create individual sample explanations
- global_explanations
create overall model explanations
- save_explanations
save explanation data for external use
- explanation_path
file path to save explanation results
- attention_threshold
minimum attention value to display in visualizations
- colormap
color palette for explanation visualizations
Value
A results object containing:
results$overview | a html | ||||
results$featureimportance$importancetable | Ranked list of feature importance scores | ||||
results$featureimportance$importanceplot | Bar plot of feature importance scores | ||||
results$shapanalysis$shapvaluestable | Mean absolute SHAP values per feature | ||||
results$shapanalysis$shapwaterfalltable | Individual prediction explanations | ||||
results$shapanalysis$shapinteractiontable | Feature interaction effects | ||||
results$shapanalysis$shapsummaryplot | Overview of SHAP values for all features | ||||
results$shapanalysis$shapwaterfallplot | Individual prediction explanation | ||||
results$shapanalysis$shapinteractionplot | Feature interaction heatmap | ||||
results$limeanalysis$limeexplanationtable | Local explanations for individual predictions | ||||
results$limeanalysis$limeplot | Local explanation visualization | ||||
results$attentionanalysis$attentionstatstable | Summary statistics of attention patterns | ||||
results$attentionanalysis$attentionpeakstable | Highest attention regions across samples | ||||
results$attentionanalysis$attentionheatmapplot | Attention map overlays on original images | ||||
results$attentionanalysis$attentiondistributionplot | Distribution of attention values | ||||
results$partialdependence$pdptable | Partial dependence effect sizes | ||||
results$partialdependence$pdpplot | Effect of individual features on predictions | ||||
results$partialdependence$iceplot | Individual conditional expectation curves | ||||
results$globalexplanations$modelinsightstable | Overall model behavior insights | ||||
results$globalexplanations$featureclusteringtable | Groups of similar features | ||||
results$globalexplanations$globalinsightplot | Overall model behavior visualization | ||||
results$globalexplanations$featureclusterplot | Dendrogram or cluster plot of features | ||||
results$localexplanations$samplewiseexplanationtable | Detailed explanations for individual samples | ||||
results$localexplanations$localexplanationplot | Individual sample explanation examples | ||||
results$validationmetrics$validationtable | Quality metrics for explanations | ||||
results$validationmetrics$stabilityanalysistable | Consistency of explanations across perturbations | ||||
results$validationmetrics$validationplot | Validation metrics visualization |
Examples
# SHAP analysis for feature importance
explainableai(
data = model_data,
model_predictions = "predictions_var",
features = c("feature1", "feature2", "feature3"),
method = "shap",
plot_type = "summary"
)
# Attention map analysis for image models
explainableai(
data = image_data,
image_paths = "image_path_var",
attention_maps = "attention_var",
method = "attention_analysis",
overlay_original = TRUE
)