🔬 ENHANCED: Comprehensive flexible parametric survival modeling combining traditional parametric distributions (Generalized Gamma, Weibull, etc.) with advanced spline-based approaches (Royston-Parmar, B-splines). Provides maximum flexibility for modeling complex hazard shapes, time-varying effects, and non-proportional hazards. ⚕️ CLINICAL USE: Model survival data when standard Cox models are inadequate. Ideal for cancer research, health economics, and comparative effectiveness studies. 📊 KEY FEATURES: • Traditional parametric and spline-based models in one function • Automatic model comparison and selection • Clinical interpretation of parameters • Comprehensive diagnostic plots • Copy-ready report templates
Usage
flexparametric(
  data,
  elapsedtime,
  outcome,
  covariates,
  outcomeLevel = "1",
  model_approach = "automatic",
  distribution = "gengamma",
  spline_type = "hazard",
  spline_df = 4,
  knot_placement = "quantiles",
  manual_knots = "",
  confidence_level = 0.95,
  grouping_variable,
  model_comparison = TRUE,
  time_varying_effects = FALSE,
  show_parameters = TRUE,
  show_aic_bic = TRUE,
  show_survival_plot = TRUE,
  show_hazard_plot = FALSE,
  show_spline_plot = FALSE,
  show_diagnostics = TRUE,
  show_clinical_summary = TRUE,
  show_density_plot = FALSE,
  plot_time_max = 0,
  showSummaries = FALSE,
  showExplanations = FALSE
)Arguments
- data
- The data as a data frame. 
- elapsedtime
- Time variable for survival analysis. 
- outcome
- Event indicator variable. 
- covariates
- Covariates to include in the model. 
- outcomeLevel
- Level of outcome variable indicating event. 
- model_approach
- Choose modeling approach: Traditional uses standard distributions, Spline-based uses flexible baseline, Automatic selects best fit. 
- distribution
- Parametric distribution for traditional approach. 
- spline_type
- Type of spline transformation for flexible approach. 
- spline_df
- Degrees of freedom for spline flexibility (3-4 typical, 5-6 complex). 
- knot_placement
- Method for placing spline knots. 
- manual_knots
- Comma-separated knot positions (when manual placement selected). 
- confidence_level
- Confidence level for parameter estimates and survival curves. 
- grouping_variable
- Optional grouping variable for stratified analysis. 
- model_comparison
- Compare multiple models and select best based on AIC/BIC. 
- time_varying_effects
- Allow covariate effects to vary over time (spline models only). 
- show_parameters
- Display parameter estimates table. 
- show_aic_bic
- Display AIC and BIC for model comparison. 
- show_survival_plot
- Display parametric survival curves. 
- show_hazard_plot
- Display parametric hazard functions. 
- show_spline_plot
- Display spline basis functions and knot positions (spline models only). 
- show_diagnostics
- Display residual plots and goodness-of-fit diagnostics. 
- show_clinical_summary
- Display clinical interpretation and copy-ready report. 
- show_density_plot
- Display parametric density functions. 
- plot_time_max
- Maximum time for plots (0 = automatic). 
- showSummaries
- Generate natural language summaries. 
- showExplanations
- Show methodology explanations. 
Value
A results object containing:
| results$todo | a html | ||||
| results$modelSummary | a html | ||||
| results$parametersTable | a table | ||||
| results$splineDetails | a table | ||||
| results$modelComparison | a table | ||||
| results$fitStatistics | a table | ||||
| results$survivalPlot | an image | ||||
| results$hazardPlot | an image | ||||
| results$densityPlot | an image | ||||
| results$splinePlot | an image | ||||
| results$diagnosticsPlot | an image | ||||
| results$clinicalSummary | a html | ||||
| results$analysisSummary | a html | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$parametersTable$asDF
as.data.frame(results$parametersTable)