Skip to contents

🔬 ENHANCED: Comprehensive flexible parametric survival modeling combining traditional parametric distributions (Generalized Gamma, Weibull, etc.) with advanced spline-based approaches (Royston-Parmar, B-splines). Provides maximum flexibility for modeling complex hazard shapes, time-varying effects, and non-proportional hazards. ⚕️ CLINICAL USE: Model survival data when standard Cox models are inadequate. Ideal for cancer research, health economics, and comparative effectiveness studies. 📊 KEY FEATURES: • Traditional parametric and spline-based models in one function • Automatic model comparison and selection • Clinical interpretation of parameters • Comprehensive diagnostic plots • Copy-ready report templates

Usage

flexparametric(
  data,
  elapsedtime,
  outcome,
  covariates,
  outcomeLevel = "1",
  model_approach = "automatic",
  distribution = "gengamma",
  spline_type = "hazard",
  spline_df = 4,
  knot_placement = "quantiles",
  manual_knots = "",
  confidence_level = 0.95,
  grouping_variable,
  model_comparison = TRUE,
  time_varying_effects = FALSE,
  show_parameters = TRUE,
  show_aic_bic = TRUE,
  show_survival_plot = TRUE,
  show_hazard_plot = FALSE,
  show_spline_plot = FALSE,
  show_diagnostics = TRUE,
  show_clinical_summary = TRUE,
  show_density_plot = FALSE,
  plot_time_max = 0,
  showSummaries = FALSE,
  showExplanations = FALSE
)

Arguments

data

The data as a data frame.

elapsedtime

Time variable for survival analysis.

outcome

Event indicator variable.

covariates

Covariates to include in the model.

outcomeLevel

Level of outcome variable indicating event.

model_approach

Choose modeling approach: Traditional uses standard distributions, Spline-based uses flexible baseline, Automatic selects best fit.

distribution

Parametric distribution for traditional approach.

spline_type

Type of spline transformation for flexible approach.

spline_df

Degrees of freedom for spline flexibility (3-4 typical, 5-6 complex).

knot_placement

Method for placing spline knots.

manual_knots

Comma-separated knot positions (when manual placement selected).

confidence_level

Confidence level for parameter estimates and survival curves.

grouping_variable

Optional grouping variable for stratified analysis.

model_comparison

Compare multiple models and select best based on AIC/BIC.

time_varying_effects

Allow covariate effects to vary over time (spline models only).

show_parameters

Display parameter estimates table.

show_aic_bic

Display AIC and BIC for model comparison.

show_survival_plot

Display parametric survival curves.

show_hazard_plot

Display parametric hazard functions.

show_spline_plot

Display spline basis functions and knot positions (spline models only).

show_diagnostics

Display residual plots and goodness-of-fit diagnostics.

show_clinical_summary

Display clinical interpretation and copy-ready report.

show_density_plot

Display parametric density functions.

plot_time_max

Maximum time for plots (0 = automatic).

showSummaries

Generate natural language summaries.

showExplanations

Show methodology explanations.

Value

A results object containing:

results$todoa html
results$modelSummarya html
results$parametersTablea table
results$splineDetailsa table
results$modelComparisona table
results$fitStatisticsa table
results$survivalPlotan image
results$hazardPlotan image
results$densityPlotan image
results$splinePlotan image
results$diagnosticsPlotan image
results$clinicalSummarya html
results$analysisSummarya html
results$methodExplanationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$parametersTable$asDF

as.data.frame(results$parametersTable)

Examples

# Example usage will be added