Friedman test for non-parametric analysis of repeated measures data with continuous or ordinal outcomes. This is the non-parametric alternative to repeated measures ANOVA when normality assumptions are violated. It tests whether the median values differ significantly across multiple related measurements or time points.
Usage
friedmantest(
  data,
  dependent,
  subject,
  within,
  method = "asymptotic",
  alpha = 0.05,
  posthoc = TRUE,
  posthoc_method = "nemenyi",
  correction = "bonferroni",
  effect_size = TRUE,
  confidence_level = 0.95,
  show_ranks = TRUE,
  show_descriptives = TRUE,
  show_assumptions = TRUE,
  clinical_interpretation = TRUE
)Arguments
- data
- the data as a data frame 
- dependent
- Continuous or ordinal dependent variable measured repeatedly 
- subject
- Variable identifying subjects/cases for repeated measurements 
- within
- Factor variable indicating the repeated measure conditions/time points 
- method
- Method for calculating p-values 
- alpha
- Alpha level for hypothesis testing 
- posthoc
- Perform pairwise post-hoc comparisons when Friedman test is significant 
- posthoc_method
- Method for post-hoc pairwise comparisons 
- correction
- Multiple comparison correction method for post-hoc tests 
- effect_size
- Include effect size measures (Kendall's W coefficient of concordance) 
- confidence_level
- Confidence level for confidence intervals 
- show_ranks
- Show detailed rank analysis and mean rank comparisons 
- show_descriptives
- Show descriptive statistics for each condition 
- show_assumptions
- Assess assumptions and provide recommendations 
- clinical_interpretation
- Provide clinical interpretation guidance for results 
Value
A results object containing:
| results$instructions | a html | ||||
| results$dataInfo | a table | ||||
| results$descriptiveStats | a table | ||||
| results$friedmanTest | a table | ||||
| results$effectSize | a table | ||||
| results$rankAnalysis | a table | ||||
| results$pairwiseComparisons | a table | ||||
| results$assumptionAssessment | a table | ||||
| results$clinicalInterpretation | a table | ||||
| results$boxplotByCondition | an image | ||||
| results$meanRankPlot | an image | ||||
| results$pairwiseComparisonPlot | an image | ||||
| results$profilePlot | an image | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$dataInfo$asDF
as.data.frame(results$dataInfo)