Generalized pseudo-observations approach for survival analysis, competing risks, and other censored data problems. This method provides a flexible framework for analyzing survival outcomes using standard statistical methods by transforming survival data into pseudo-observations that can be analyzed with conventional regression techniques. Supports various functionals including survival probabilities, cumulative incidence functions, and restricted mean survival times.
Usage
generalpseudo(
  data,
  elapsedtime,
  outcome,
  explanatory,
  outcomeLevel = "1",
  functional_type = "survival",
  cause_specific = 1,
  time_points = "12,24,60",
  quantile_prob = 0.5,
  rmst_tau = 60,
  pseudo_method = "jackknife",
  regression_type = "linear",
  confidence_level = 0.95,
  bootstrap_reps = 500,
  clustering_var,
  show_pseudo_values = FALSE,
  show_model_diagnostics = TRUE,
  show_comparison = FALSE,
  functional_plot = TRUE,
  residual_plot = FALSE,
  pseudo_plot = FALSE,
  showSummaries = TRUE,
  showExplanations = TRUE
)Arguments
- data
- the data as a data frame 
- elapsedtime
- Time to event or censoring 
- outcome
- Event indicator (for survival: 1 = event, 0 = censored; for competing risks: 0 = censored, 1,2,... = specific causes) 
- explanatory
- Explanatory variables for pseudo-observation regression modeling 
- outcomeLevel
- Level indicating event occurrence (for survival analysis) 
- functional_type
- Type of functional for pseudo-observation calculation 
- cause_specific
- Cause of interest for competing risks analysis (competing events coded as different integers) 
- time_points
- Comma-separated list of time points at which to calculate pseudo-observations 
- quantile_prob
- Probability for quantile pseudo-observations (e.g., 0.5 for median survival) 
- rmst_tau
- Restriction time tau for restricted mean survival time calculations 
- pseudo_method
- Method for calculating pseudo-observations 
- regression_type
- Type of regression model for pseudo-observations 
- confidence_level
- Confidence level for confidence intervals 
- bootstrap_reps
- Number of bootstrap replications for pseudo-observation calculation 
- clustering_var
- Variable for clustered data analysis (optional) 
- show_pseudo_values
- Display calculated pseudo-observation values 
- show_model_diagnostics
- Display comprehensive model diagnostic information 
- show_comparison
- Compare pseudo-observation results with traditional methods 
- functional_plot
- Display plots of the estimated functionals 
- residual_plot
- Display residual diagnostic plots 
- pseudo_plot
- Display pseudo-observation distribution plots 
- showSummaries
- Show comprehensive analysis summaries 
- showExplanations
- Show detailed methodology explanations 
Value
A results object containing:
| results$todo | a html | ||||
| results$functionalSummary | a table | ||||
| results$regressionResults | a table | ||||
| results$pseudoValues | a table | ||||
| results$modelDiagnostics | a table | ||||
| results$methodComparison | a table | ||||
| results$competingRisks | a table | ||||
| results$restrictedMean | a table | ||||
| results$quantileResults | a table | ||||
| results$methodologyExplanation | a html | ||||
| results$analysisSummary | a html | ||||
| results$functionalPlot | an image | ||||
| results$residualPlot | an image | ||||
| results$pseudoPlot | an image | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$functionalSummary$asDF
as.data.frame(results$functionalSummary)