Skip to contents

Generalized pseudo-observations approach for survival analysis, competing risks, and other censored data problems. This method provides a flexible framework for analyzing survival outcomes using standard statistical methods by transforming survival data into pseudo-observations that can be analyzed with conventional regression techniques. Supports various functionals including survival probabilities, cumulative incidence functions, and restricted mean survival times.

Usage

generalpseudo(
  data,
  elapsedtime,
  outcome,
  explanatory,
  outcomeLevel = "1",
  functional_type = "survival",
  cause_specific = 1,
  time_points = "12,24,60",
  quantile_prob = 0.5,
  rmst_tau = 60,
  pseudo_method = "jackknife",
  regression_type = "linear",
  confidence_level = 0.95,
  bootstrap_reps = 500,
  clustering_var,
  show_pseudo_values = FALSE,
  show_model_diagnostics = TRUE,
  show_comparison = FALSE,
  functional_plot = TRUE,
  residual_plot = FALSE,
  pseudo_plot = FALSE,
  showSummaries = TRUE,
  showExplanations = TRUE
)

Arguments

data

the data as a data frame

elapsedtime

Time to event or censoring

outcome

Event indicator (for survival: 1 = event, 0 = censored; for competing risks: 0 = censored, 1,2,... = specific causes)

explanatory

Explanatory variables for pseudo-observation regression modeling

outcomeLevel

Level indicating event occurrence (for survival analysis)

functional_type

Type of functional for pseudo-observation calculation

cause_specific

Cause of interest for competing risks analysis (competing events coded as different integers)

time_points

Comma-separated list of time points at which to calculate pseudo-observations

quantile_prob

Probability for quantile pseudo-observations (e.g., 0.5 for median survival)

rmst_tau

Restriction time tau for restricted mean survival time calculations

pseudo_method

Method for calculating pseudo-observations

regression_type

Type of regression model for pseudo-observations

confidence_level

Confidence level for confidence intervals

bootstrap_reps

Number of bootstrap replications for pseudo-observation calculation

clustering_var

Variable for clustered data analysis (optional)

show_pseudo_values

Display calculated pseudo-observation values

show_model_diagnostics

Display comprehensive model diagnostic information

show_comparison

Compare pseudo-observation results with traditional methods

functional_plot

Display plots of the estimated functionals

residual_plot

Display residual diagnostic plots

pseudo_plot

Display pseudo-observation distribution plots

showSummaries

Show comprehensive analysis summaries

showExplanations

Show detailed methodology explanations

Value

A results object containing:

results$todoa html
results$functionalSummarya table
results$regressionResultsa table
results$pseudoValuesa table
results$modelDiagnosticsa table
results$methodComparisona table
results$competingRisksa table
results$restrictedMeana table
results$quantileResultsa table
results$methodologyExplanationa html
results$analysisSummarya html
results$functionalPlotan image
results$residualPlotan image
results$pseudoPlotan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$functionalSummary$asDF

as.data.frame(results$functionalSummary)

Examples