Skip to contents

Fits Hidden Markov models for survival data using the msm package. Hidden Markov models are useful when the states are not directly observed but are inferred from observed covariates or measurements. Provides estimation of transition intensities, state prevalences, and predictions with uncertainty quantification.

Usage

hiddenmarkov(
  data,
  subject,
  state,
  time,
  covs,
  hiddenCovs,
  nstates = 3,
  qmatrix = "irreversible",
  censor,
  pci = FALSE,
  timeIntervals = "",
  obstype = "exact",
  ematrix = "identity",
  method = "BFGS",
  fixedpar = "",
  initprobs = "",
  showModel = TRUE,
  showTransitions = TRUE,
  predTimes = "1, 3, 5",
  showPrevalence = TRUE,
  showResiduals = FALSE,
  showViterbi = FALSE,
  bootstrap = FALSE,
  nboot = 500,
  plotTransitions = TRUE,
  plotPrevalence = TRUE,
  plotResiduals = FALSE,
  showEducational = TRUE
)

Arguments

data

The data as a data frame.

subject

Subject identifier variable

state

Observed state variable (can be noisy observations of true states)

time

Time at which state was observed

covs

Covariates to include in the transition intensity model

hiddenCovs

Covariates for hidden state probabilities (misclassification model)

nstates

Number of hidden states in the model

qmatrix

Structure of the transition intensity matrix

censor

Censoring indicator (1=observed, 0=censored)

pci

Use piecewise constant transition intensities

timeIntervals

Comma-separated time intervals for piecewise constant model

obstype

Type of observation process

ematrix

Structure of the emission/misclassification matrix

method

Optimization method for parameter estimation

fixedpar

Comma-separated indices of parameters to fix during estimation

initprobs

Comma-separated initial state probabilities

showModel

Display detailed model summary and parameter estimates

showTransitions

Display transition probability matrices at specific times

predTimes

Comma-separated list of time points for transition predictions

showPrevalence

Display expected state prevalences over time

showResiduals

Display model residuals and goodness-of-fit statistics

showViterbi

Display most likely hidden state sequences (Viterbi algorithm)

bootstrap

Use bootstrap methods for confidence interval estimation

nboot

Number of bootstrap samples (when bootstrap is enabled)

plotTransitions

Display transition intensity plots over time

plotPrevalence

Display state prevalence plots over time

plotResiduals

Display residual plots for model diagnostics

showEducational

Display educational information about Hidden Markov models

Value

A results object containing:

results$modelSummarya table
results$transitionMatrixa table
results$transitionProbsa table
results$statePrevalencea table
results$misclassificationa table
results$goodnessOfFita table
results$viterbiStatesa table
results$transitionPlotan image
results$prevalencePlotan image
results$residualPlotan image
results$educationalTexta html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelSummary$asDF

as.data.frame(results$modelSummary)

Examples

# \donttest{
# example will be added
# }