Hierarchical Bayesian models for multi-center diagnostic studies. Implements bivariate meta-analysis of diagnostic accuracy with between-study heterogeneity and correlation structures.
Usage
hierarchicalbayes(
  tp,
  fp,
  fn,
  tn,
  study_id,
  study_covariates = NULL,
  model_type = "bivariate_normal",
  correlation_model = "unstructured",
  prior_specification = "weakly_informative",
  mcmc_chains = 4,
  mcmc_iterations = 20000,
  warmup_iterations = 10000,
  thin_interval = 1,
  adapt_delta = 0.95,
  max_treedepth = 15,
  credible_level = 0.95,
  prediction_interval = TRUE,
  cross_validation = FALSE,
  posterior_predictive = TRUE,
  convergence_diagnostics = TRUE,
  model_comparison = TRUE,
  forest_plots = TRUE,
  sroc_curves = TRUE,
  trace_plots = FALSE,
  density_plots = TRUE,
  pairs_plots = FALSE,
  shrinkage_plots = FALSE,
  meta_regression = FALSE,
  outlier_detection = TRUE,
  sensitivity_analysis = FALSE
)Arguments
- tp
- True positive counts by study/center 
- fp
- False positive counts by study/center 
- fn
- False negative counts by study/center 
- tn
- True negative counts by study/center 
- study_id
- Unique identifier for each study/center 
- study_covariates
- Covariates explaining between-study heterogeneity 
- model_type
- Statistical model for hierarchical meta-analysis 
- correlation_model
- Assumed correlation between diagnostic measures 
- prior_specification
- Method for specifying prior distributions 
- mcmc_chains
- Parallel chains for convergence assessment 
- mcmc_iterations
- Total iterations including warmup 
- warmup_iterations
- Burn-in period for MCMC sampling 
- thin_interval
- Thinning to reduce autocorrelation 
- adapt_delta
- Controls step size adaptation in HMC 
- max_treedepth
- Controls exploration in NUTS algorithm 
- credible_level
- Level for Bayesian credible intervals 
- prediction_interval
- Whether to compute predictive distributions 
- cross_validation
- Whether to perform cross-validation 
- posterior_predictive
- Whether to perform posterior predictive checking 
- convergence_diagnostics
- Whether to assess MCMC convergence 
- model_comparison
- Whether to compute model comparison metrics 
- forest_plots
- Whether to create forest plots 
- sroc_curves
- Whether to plot SROC curves 
- trace_plots
- Whether to create MCMC trace plots 
- density_plots
- Whether to create posterior density plots 
- pairs_plots
- Whether to create parameter correlation plots 
- shrinkage_plots
- Whether to plot shrinkage effects 
- meta_regression
- Whether to conduct meta-regression 
- outlier_detection
- Whether to perform outlier analysis 
- sensitivity_analysis
- Whether to perform sensitivity analysis 
Value
A results object containing:
| results$instructions | a html | ||||
| results$modelSpecification | a table | ||||
| results$studySummary | a table | ||||
| results$pooledEstimates | a table | ||||
| results$hierarchicalParameters | a table | ||||
| results$heterogeneityAssessment | a table | ||||
| results$correlationAnalysis | a table | ||||
| results$metaRegressionResults | a table | ||||
| results$outlierAnalysis | a table | ||||
| results$convergenceDiagnostics | a table | ||||
| results$modelComparison | a table | ||||
| results$posteriorPredictive | a table | ||||
| results$forestPlotSensitivity | an image | ||||
| results$forestPlotSpecificity | an image | ||||
| results$srocCurvePlot | an image | ||||
| results$tracePlots | an image | ||||
| results$densityPlots | an image | ||||
| results$pairsPlots | an image | ||||
| results$shrinkagePlots | an image | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSpecification$asDF
as.data.frame(results$modelSpecification)