Hierarchical (multilevel) mixed-effects models for analyzing nested pathology data structures. Essential for WSI analysis with Patient > Slide > ROI > Cell hierarchies, and prevents Type I errors from ignoring clustering effects.
Usage
hierarchicalpathology(
data,
dependent,
level_3,
level_2,
level_1,
covariates,
model_type = "linear",
descriptives = TRUE,
variance_components = TRUE,
icc_analysis = TRUE,
random_effects = TRUE,
model_comparison = FALSE,
diagnostics = TRUE,
confidence_level = 0.95,
optimizer = "bobyqa",
max_iterations = 1000
)Arguments
- data
the data as a data frame
- dependent
The dependent variable from
data, variable must be numeric- level_3
Highest level grouping variable (e.g., Patient ID, Institution)
- level_2
Intermediate level grouping variable (e.g., Slide ID, Sample ID)
- level_1
Lowest level grouping variable (e.g., ROI ID, Field ID)
- covariates
Optional covariates for fixed effects (age, treatment, etc.)
- model_type
Type of mixed-effects model based on outcome variable
- descriptives
Show descriptive statistics by hierarchical level
- variance_components
Calculate and display variance components
- icc_analysis
Calculate Intraclass Correlation Coefficients
- random_effects
Display random effects variance and standard deviations
- model_comparison
Compare nested models with likelihood ratio tests
- diagnostics
Generate diagnostic plots and residual analysis
- confidence_level
Confidence level for parameter estimates and intervals
- optimizer
Optimization algorithm for model fitting
- max_iterations
Maximum number of iterations for model convergence
Value
A results object containing:
results$instructions | Instructions for hierarchical mixed-effects modeling | ||||
results$descriptives | Summary statistics for each hierarchical level | ||||
results$modelresults | Fixed effects parameter estimates and tests | ||||
results$randomeffects | Random effects variance components | ||||
results$variancecomponents | Partition of variance across hierarchical levels | ||||
results$icc | ICC values indicating clustering effects | ||||
results$modelcomparison | Likelihood ratio tests comparing nested models | ||||
results$diagnosticplot | Residual plots and diagnostic checks | ||||
results$residualplot | Residuals plotted by hierarchical level | ||||
results$interpretation | Clinical context and interpretation for hierarchical models |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$descriptives$asDF
as.data.frame(results$descriptives)
Examples
data('histopathology')
hierarchicalpathology(data = histopathology,
dependent = measurement,
level_3 = patient_id,
level_2 = slide_id,
level_1 = roi_id)