Skip to contents

Survival analysis and prognostic clustering using IHC markers. Designed for prognostic biomarker discovery and risk stratification.

Usage

ihcsurvival(
  data,
  markers,
  survivalTime,
  survivalEvent,
  id = NULL,
  prognosticClustering = TRUE,
  multiRegionAnalysis = FALSE,
  centralRegion,
  invasiveRegion,
  riskStratification = "tertiles",
  coxRegression = TRUE,
  multivariateAdjustment,
  kaplanMeierPlots = TRUE,
  landmarkAnalysis = FALSE,
  landmarkTime = 60,
  landmarkTimePoints = "12,24,36,48,60",
  confidenceLevel = 0.95
)

Arguments

data

the data as a data frame

markers

IHC marker variables for prognostic analysis

survivalTime

Time to event variable (months, years, days)

survivalEvent

Event indicator (1=event, 0=censored)

id

Case identifier for tracking

prognosticClustering

Perform clustering optimized for survival outcomes

multiRegionAnalysis

Compare central vs invasive tumor regions

centralRegion

IHC markers from central tumor region

invasiveRegion

IHC markers from invasive tumor region

riskStratification

Method for creating prognostic risk groups

coxRegression

Perform Cox proportional hazards regression

multivariateAdjustment

Clinical variables for multivariate adjustment

kaplanMeierPlots

Generate survival curves for risk groups

landmarkAnalysis

Perform landmark survival analysis at specific time points

landmarkTime

Time point for landmark analysis (same units as survival time)

landmarkTimePoints

Comma-separated time points for landmark survival analysis (e.g., "12,24,36")

confidenceLevel

Confidence level for survival estimates and hazard ratios

Value

A results object containing:

results$instructionsa html
results$assumptionsa html
results$reportSentencea html
results$prognosticGroupsa table
results$coxResultsa table
results$multivariateResultsa table
results$regionalComparisona table
results$landmarkResultsa table
results$modelFita table
results$kaplanMeierPlotan image
results$hazardPlotan image
results$riskScorePlotan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$prognosticGroups$asDF

as.data.frame(results$prognosticGroups)

Examples