Skip to contents

Wrapper Function for ggstatsplot::ggcorrmat and ggstatsplot::grouped_ggcorrmat to generate correlation matrix visualizations with significance testing.

Usage

jjcorrmat(
  data,
  dep,
  grvar,
  typestatistics = "parametric",
  matrixtype = "upper",
  matrixmethod = "square",
  siglevel = 0.05,
  conflevel = 0.95,
  padjustmethod = "holm",
  k = 2,
  lowcolor = "#E69F00",
  midcolor = "white",
  highcolor = "#009E73",
  title = "",
  subtitle = "",
  caption = ""
)

Arguments

data

The data as a data frame.

dep

List of continuous variables for which the correlation matrix will be computed and visualized. All variables must be numeric.

grvar

Optional grouping variable to create separate correlation matrices for each level of the grouping variable.

typestatistics

Type of correlation analysis to perform. 'parametric' uses Pearson correlation, 'nonparametric' uses Spearman's rho, 'robust' uses percentage bend correlation, 'bayes' computes Bayes factors.

matrixtype

Display upper triangular, lower triangular or full matrix.

matrixmethod

The visualization method of correlation matrix to be used.

siglevel

Significance level for marking correlations as insignificant.

conflevel

Confidence level for confidence intervals.

padjustmethod

Adjustment method for multiple comparisons.

k

Number of decimal places for displaying correlation coefficients.

lowcolor

Color for low (negative) correlation values.

midcolor

Color for mid (zero) correlation values.

highcolor

Color for high (positive) correlation values.

title

Title for the correlation matrix plot.

subtitle

Subtitle for the correlation matrix plot.

caption

Caption for the correlation matrix plot.

Value

A results object containing:

results$todoa html
results$plot2an image
results$plotan image

Examples

# \donttest{
# Load test data
data("mtcars")

# Basic correlation matrix with defaults
jjcorrmat(
  data = mtcars,
  dep = c("mpg", "hp", "wt", "qsec"),
  typestatistics = "parametric"
)
#> Error in jjcorrmat(data = mtcars, dep = c("mpg", "hp", "wt", "qsec"),     typestatistics = "parametric"): argument "grvar" is missing, with no default

# Customized correlation matrix
jjcorrmat(
  data = mtcars,
  dep = c("mpg", "hp", "wt", "qsec", "disp"),
  typestatistics = "nonparametric",
  matrixtype = "lower",
  matrixmethod = "circle",
  padjustmethod = "bonferroni",
  k = 3,
  lowcolor = "blue",
  midcolor = "white",
  highcolor = "red",
  title = "Motor Trend Car Correlations"
)
#> Error in jjcorrmat(data = mtcars, dep = c("mpg", "hp", "wt", "qsec", "disp"),     typestatistics = "nonparametric", matrixtype = "lower", matrixmethod = "circle",     padjustmethod = "bonferroni", k = 3, lowcolor = "blue", midcolor = "white",     highcolor = "red", title = "Motor Trend Car Correlations"): argument "grvar" is missing, with no default

# Grouped correlation matrix by number of cylinders
jjcorrmat(
  data = mtcars,
  dep = c("mpg", "hp", "wt", "qsec"),
  grvar = "cyl",
  typestatistics = "robust",
  siglevel = 0.01
)
#> 
#>  CORRELATION MATRIX
#> 
#>  Preparing correlation analysis options...


# }