Create publication-ready plots using the ggpubr package. Provides easy-to-use functions for creating customized plots with statistical annotations for scientific publications.
Usage
jjpubr(
  data,
  plotType = "boxplot",
  xvar,
  yvar,
  groupvar = NULL,
  facetvar = NULL,
  addStats = FALSE,
  statMethod = "auto",
  pairwiseComparisons = FALSE,
  addCorr = FALSE,
  corrMethod = "pearson",
  addSmoothLine = TRUE,
  addMarginal = FALSE,
  addDensity = FALSE,
  bins = 30,
  addMean = FALSE,
  addMedian = FALSE,
  addPoints = FALSE,
  pointAlpha = 0.6,
  addMeanSD = FALSE,
  palette = "jco",
  fillColor = "#0073C2FF",
  title = "",
  xlab = "",
  ylab = "",
  legendPosition = "right",
  theme = "pubr",
  plotWidth = 600,
  plotHeight = 500
)Arguments
- data
- the data as a data frame 
- plotType
- Type of plot: boxplot, violin, scatter, histogram, density, barplot, dotplot, line, errorplot 
- xvar
- X-axis variable 
- yvar
- Y-axis variable (continuous) 
- groupvar
- Grouping variable for coloring points/boxes 
- facetvar
- Variable for faceting plots into panels 
- addStats
- Whether to add statistical comparison p-values 
- statMethod
- Method for statistical comparison 
- pairwiseComparisons
- Whether to show all pairwise comparisons 
- addCorr
- Whether to add correlation statistics 
- corrMethod
- Correlation method 
- addSmoothLine
- Whether to add smooth trend line 
- addMarginal
- Whether to add marginal histograms 
- addDensity
- Whether to add density curve overlay 
- bins
- Number of histogram bins 
- addMean
- Whether to add mean line 
- addMedian
- Whether to add median line 
- addPoints
- Whether to add jittered points 
- pointAlpha
- Alpha transparency for points 
- addMeanSD
- Whether to show mean ± SD 
- palette
- Color palette name 
- fillColor
- Fill color for single-variable plots 
- title
- Plot title 
- xlab
- X-axis label 
- ylab
- Y-axis label 
- legendPosition
- Legend position 
- theme
- Theme name 
- plotWidth
- Plot width in pixels 
- plotHeight
- Plot height in pixels 
Value
A results object containing:
| results$todo | a html | ||||
| results$plot | an image | ||||
| results$statistics | a table | ||||
| results$correlation | a table | ||||
| results$descriptives | a table | ||||
| results$plotInfo | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$statistics$asDF
as.data.frame(results$statistics)
Details
Available plot types:
- Box plots with statistical comparisons 
- Violin plots with distribution visualization 
- Scatter plots with correlation analysis 
- Histograms with density overlays 
- Density plots for distribution analysis 
- Bar plots for categorical data 
Each plot type supports:
- Automatic statistical testing and p-value annotations 
- Publication-ready themes 
- Customizable color palettes 
- Grouping and faceting options 
Examples
# Box plot with statistical comparison
jjpubr(
    data = mtcars,
    plotType = "boxplot",
    xvar = "cyl",
    yvar = "mpg",
    addStats = TRUE,
    palette = "jco"
)
# Scatter plot with correlation
jjpubr(
    data = mtcars,
    plotType = "scatter",
    xvar = "wt",
    yvar = "mpg",
    addCorr = TRUE,
    addMarginal = TRUE
)
# Histogram with density overlay
jjpubr(
    data = mtcars,
    plotType = "histogram",
    xvar = "mpg",
    addDensity = TRUE,
    fillColor = "#0073C2FF"
)