Create publication-ready plots using the ggpubr package. Provides easy-to-use functions for creating customized plots with statistical annotations for scientific publications.
Usage
jjpubr(
data,
plotType = "boxplot",
xvar,
yvar,
groupvar = NULL,
facetvar = NULL,
addStats = FALSE,
statMethod = "auto",
pairwiseComparisons = FALSE,
addCorr = FALSE,
corrMethod = "pearson",
addSmoothLine = TRUE,
addMarginal = FALSE,
addDensity = FALSE,
bins = 30,
addMean = FALSE,
addMedian = FALSE,
addPoints = FALSE,
pointAlpha = 0.6,
addMeanSD = FALSE,
palette = "jco",
fillColor = "#0073C2FF",
title = "",
xlab = "",
ylab = "",
legendPosition = "right",
theme = "pubr",
plotWidth = 600,
plotHeight = 500
)Arguments
- data
the data as a data frame
- plotType
Type of plot: boxplot, violin, scatter, histogram, density, barplot, dotplot, line, errorplot
- xvar
X-axis variable
- yvar
Y-axis variable (continuous)
- groupvar
Grouping variable for coloring points/boxes
- facetvar
Variable for faceting plots into panels
- addStats
Whether to add statistical comparison p-values
- statMethod
Method for statistical comparison
- pairwiseComparisons
Whether to show all pairwise comparisons
- addCorr
Whether to add correlation statistics
- corrMethod
Correlation method
- addSmoothLine
Whether to add smooth trend line
- addMarginal
Whether to add marginal histograms
- addDensity
Whether to add density curve overlay
- bins
Number of histogram bins
- addMean
Whether to add mean line
- addMedian
Whether to add median line
- addPoints
Whether to add jittered points
- pointAlpha
Alpha transparency for points
- addMeanSD
Whether to show mean ± SD
- palette
Color palette name
- fillColor
Fill color for single-variable plots
- title
Plot title
- xlab
X-axis label
- ylab
Y-axis label
- legendPosition
Legend position
- theme
Theme name
- plotWidth
Plot width in pixels
- plotHeight
Plot height in pixels
Value
A results object containing:
results$todo | a html | ||||
results$plot | an image | ||||
results$statistics | a table | ||||
results$correlation | a table | ||||
results$descriptives | a table | ||||
results$plotInfo | a html |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$statistics$asDF
as.data.frame(results$statistics)
Details
Available plot types:
Box plots with statistical comparisons
Violin plots with distribution visualization
Scatter plots with correlation analysis
Histograms with density overlays
Density plots for distribution analysis
Bar plots for categorical data
Each plot type supports:
Automatic statistical testing and p-value annotations
Publication-ready themes
Customizable color palettes
Grouping and faceting options
Examples
# Box plot with statistical comparison
jjpubr(
data = mtcars,
plotType = "boxplot",
xvar = "cyl",
yvar = "mpg",
addStats = TRUE,
palette = "jco"
)
# Scatter plot with correlation
jjpubr(
data = mtcars,
plotType = "scatter",
xvar = "wt",
yvar = "mpg",
addCorr = TRUE,
addMarginal = TRUE
)
# Histogram with density overlay
jjpubr(
data = mtcars,
plotType = "histogram",
xvar = "mpg",
addDensity = TRUE,
fillColor = "#0073C2FF"
)