Skip to contents

Laboratory Result Interpretation provides comprehensive analysis and clinical interpretation of laboratory test results with reference ranges, demographic adjustments, trend analysis, and critical value monitoring for evidence-based diagnostic decision-making and clinical assessment optimization.

Usage

labinterpret(
  data,
  labValues,
  patientDemo,
  testDates,
  clinicalHistory,
  medicationVars,
  reference_ranges = TRUE,
  critical_values = TRUE,
  trend_analysis = TRUE,
  delta_checks = TRUE,
  reference_source = "demographic_adjusted",
  interpretation_level = "comprehensive",
  confidence_interval = 0.95,
  delta_threshold = 50,
  trend_window = 90,
  age_adjustment = TRUE,
  gender_adjustment = TRUE,
  ethnicity_adjustment = FALSE,
  medication_interaction = TRUE,
  clinical_correlation = TRUE,
  quality_assessment = TRUE,
  interpretation_plots = TRUE,
  trend_plots = TRUE,
  reference_visualization = TRUE,
  delta_plots = FALSE,
  correlation_matrix = FALSE,
  clinical_guidelines = TRUE,
  interpretation_report = TRUE
)

Arguments

data

.

labValues

Laboratory test results and biomarker values for interpretation

patientDemo

Patient demographic variables (age, gender, ethnicity) for reference range adjustment

testDates

Date/time variables for temporal trend analysis (optional)

clinicalHistory

Clinical history and comorbidity variables affecting reference ranges (optional)

medicationVars

Current medications that may affect laboratory values (optional)

reference_ranges

Apply demographic-adjusted reference ranges and normal value analysis

critical_values

Monitor and flag critical laboratory values requiring immediate attention

trend_analysis

Analyze laboratory value trends over time with statistical significance testing

delta_checks

Perform delta checks for significant changes between consecutive results

reference_source

Source of reference ranges for laboratory value interpretation

interpretation_level

Level of detail for laboratory result interpretation and clinical correlation

confidence_interval

Confidence level for reference range calculations and interpretations

delta_threshold

Percentage change threshold for delta check significance testing

trend_window

Time window for temporal trend analysis and pattern detection

age_adjustment

Apply age-specific reference ranges for laboratory value interpretation

gender_adjustment

Apply gender-specific reference ranges for laboratory value interpretation

ethnicity_adjustment

Apply ethnicity-specific reference ranges when available

medication_interaction

Analyze potential medication effects on laboratory values

clinical_correlation

Correlate laboratory results with clinical presentation and history

quality_assessment

Include quality indicators and analytical performance metrics

interpretation_plots

Create visualization plots for laboratory result interpretation

trend_plots

Create time-series plots showing laboratory value trends

reference_visualization

Visualize reference ranges and patient results comparison

delta_plots

Create plots showing significant changes between consecutive results

correlation_matrix

Create correlation matrix of laboratory values for pattern analysis

clinical_guidelines

Integrate clinical laboratory guidelines and best practice recommendations

interpretation_report

Generate comprehensive clinical interpretation report with recommendations

Value

A results object containing:

results$todoa html
results$interpretationTablea table
results$criticalValuesTablea table
results$trendAnalysisTablea table
results$deltaChecksTablea table
results$medicationEffectsTablea table
results$correlationAnalysisTablea table
results$qualityMetricsTablea table
results$interpretationSummarya html
results$clinicalRecommendationsa html
results$interpretationPlotan image
results$trendPlotan image
results$referencePlotan image
results$deltaPlotan image
results$correlationPlotan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$interpretationTable$asDF

as.data.frame(results$interpretationTable)

Examples

data('clinicaldata', package='ClinicoPath')

# Basic laboratory interpretation
labinterpret(clinicaldata,
            labValues = c('Hemoglobin', 'Glucose', 'Creatinine'),
            patientDemo = c('Age', 'Gender'),
            reference_ranges = TRUE,
            trend_analysis = TRUE)