Marginal models for analyzing recurrent event data using rate-based approaches. This analysis provides population-average estimates of covariate effects on recurrent event rates, with options for marginal rate models, accelerated rate models, and gamma frailty models to handle within-subject correlation.
Usage
marginalrecurrent(
  data,
  subjectID,
  time,
  event,
  terminal_time,
  terminal_event,
  covariates,
  model_type = "marginal",
  baseline_type = "nonparametric",
  confidence_level = 0.95,
  bootstrap = TRUE,
  bootstrap_samples = 1000,
  robust_se = TRUE,
  include_cumulative = TRUE,
  include_survival = TRUE,
  time_points = "",
  plotRecurrentEvents = TRUE,
  plotCumulative = TRUE,
  plotSurvival = TRUE,
  plotResiduals = FALSE,
  showEducation = TRUE,
  showInterpretation = TRUE,
  exportResults = FALSE
)Arguments
- data
- . 
- subjectID
- . 
- time
- . 
- event
- . 
- terminal_time
- . 
- terminal_event
- . 
- covariates
- . 
- model_type
- . 
- baseline_type
- . 
- confidence_level
- . 
- bootstrap
- . 
- bootstrap_samples
- . 
- robust_se
- . 
- include_cumulative
- . 
- include_survival
- . 
- time_points
- . 
- plotRecurrentEvents
- . 
- plotCumulative
- . 
- plotSurvival
- . 
- plotResiduals
- . 
- showEducation
- . 
- showInterpretation
- . 
- exportResults
- . 
Value
A results object containing:
| results$todo | a html | ||||
| results$modelfit | a table | ||||
| results$coefficients | a table | ||||
| results$cumulativeRate | a table | ||||
| results$survivalFunction | a table | ||||
| results$goodnessOfFit | a table | ||||
| results$educationalContent | a html | ||||
| results$interpretationContent | a html | ||||
| results$recurrentEventsPlot | an image | ||||
| results$cumulativePlot | an image | ||||
| results$survivalPlot | an image | ||||
| results$residualsPlot | an image | ||||
| results$exportTable | a table | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelfit$asDF
as.data.frame(results$modelfit)
Examples
data('histopathology', package='ClinicoPath')