Comprehensive meta-analysis and evidence synthesis including forest plots, heterogeneity testing, publication bias assessment, diagnostic test accuracy meta-analysis, and network meta-analysis.
Usage
metaanalysis(
  data,
  effect_size,
  variance,
  study_id,
  sample_size,
  year,
  analysis_type = "generic",
  model_type = "random_effects",
  effect_measure = "odds_ratio",
  heterogeneity_method = "dersimonian_laird",
  true_positives,
  false_positives,
  false_negatives,
  true_negatives,
  dta_model_type = "bivariate",
  treatment_arm,
  comparison_arm,
  network_method = "frequentist",
  publication_bias = TRUE,
  bias_tests = "all_tests",
  subgroup_var,
  moderator_vars,
  meta_regression = FALSE,
  sensitivity_analysis = TRUE,
  outlier_detection = TRUE,
  forest_plot_options = TRUE,
  prediction_interval = TRUE,
  confidence_level = 0.95,
  robust_methods = FALSE,
  small_sample_correction = TRUE,
  knha_adjustment = TRUE
)Arguments
- data
- the data as a data frame 
- effect_size
- Effect size variable (e.g., log odds ratio, Cohen's d, log hazard ratio) 
- variance
- Variance or standard error of the effect size 
- study_id
- Study identifier for each effect size (required for meta-analysis) 
- sample_size
- Sample size for each study (optional, used for sensitivity analysis) 
- year
- Publication year for temporal trend analysis and publication bias assessment 
- analysis_type
- Type of meta-analysis to perform: Standard for combining effect sizes, Diagnostic for test accuracy studies, Network for multiple treatment comparisons 
- model_type
- Random-effects is usually preferred as it accounts for differences between studies 
- effect_measure
- Choose based on your outcome type: continuous (mean difference), binary (odds/risk ratio), time-to-event (hazard ratio), or association (correlation) 
- heterogeneity_method
- Method for estimating between-study heterogeneity (tau-squared) 
- true_positives
- True positives for diagnostic test accuracy meta-analysis 
- false_positives
- False positives for diagnostic test accuracy meta-analysis 
- false_negatives
- False negatives for diagnostic test accuracy meta-analysis 
- true_negatives
- True negatives for diagnostic test accuracy meta-analysis 
- dta_model_type
- Model type for diagnostic test accuracy meta-analysis 
- treatment_arm
- Treatment arm identifier for network meta-analysis 
- comparison_arm
- Comparison arm identifier for network meta-analysis 
- network_method
- Statistical approach for network meta-analysis 
- publication_bias
- Perform publication bias assessment using funnel plots and statistical tests 
- bias_tests
- Statistical tests for publication bias assessment 
- subgroup_var
- Categorical variable for subgroup analysis 
- moderator_vars
- Variables for meta-regression analysis 
- meta_regression
- Perform meta-regression analysis with moderator variables 
- sensitivity_analysis
- Perform sensitivity analysis including leave-one-out and influence diagnostics 
- outlier_detection
- Detect outlying studies using standardized residuals and influence measures 
- forest_plot_options
- Enable forest plot customization options 
- prediction_interval
- Include prediction intervals in forest plots and results 
- confidence_level
- Confidence level for confidence and prediction intervals 
- robust_methods
- Use robust methods for outlier-resistant meta-analysis 
- small_sample_correction
- Apply small sample corrections (Hartung-Knapp adjustment) 
- knha_adjustment
- Apply Knapp-Hartung adjustment for random-effects models 
Value
A results object containing:
| results$instructions | a html | ||||
| results$studySummary | a table | ||||
| results$overallResults | a table | ||||
| results$heterogeneityAssessment | a table | ||||
| results$publicationBiasResults | a table | ||||
| results$subgroupAnalysis | a table | ||||
| results$metaRegressionResults | a table | ||||
| results$diagnosticAccuracyResults | a table | ||||
| results$networkResults | a table | ||||
| results$sensitivityAnalysis | a table | ||||
| results$outlierAnalysis | a table | ||||
| results$modelFitStatistics | a table | ||||
| results$forestPlot | an image | ||||
| results$funnelPlot | an image | ||||
| results$heterogeneityPlot | an image | ||||
| results$metaRegressionPlot | an image | ||||
| results$srocPlot | an image | ||||
| results$networkPlot | an image | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$studySummary$asDF
as.data.frame(results$studySummary)