Skip to contents

Comprehensive meta-analysis and evidence synthesis including forest plots, heterogeneity testing, publication bias assessment, diagnostic test accuracy meta-analysis, and network meta-analysis.

Usage

metaanalysis(
  data,
  effect_size,
  variance,
  study_id,
  sample_size,
  year,
  analysis_type = "generic",
  model_type = "random_effects",
  effect_measure = "odds_ratio",
  heterogeneity_method = "dersimonian_laird",
  true_positives,
  false_positives,
  false_negatives,
  true_negatives,
  dta_model_type = "bivariate",
  treatment_arm,
  comparison_arm,
  network_method = "frequentist",
  publication_bias = TRUE,
  bias_tests = "all_tests",
  subgroup_var,
  moderator_vars,
  meta_regression = FALSE,
  sensitivity_analysis = TRUE,
  outlier_detection = TRUE,
  forest_plot_options = TRUE,
  prediction_interval = TRUE,
  confidence_level = 0.95,
  robust_methods = FALSE,
  small_sample_correction = TRUE,
  knha_adjustment = TRUE
)

Arguments

data

the data as a data frame

effect_size

Effect size variable (e.g., log odds ratio, Cohen's d, log hazard ratio)

variance

Variance or standard error of the effect size

study_id

Study identifier for each effect size (required for meta-analysis)

sample_size

Sample size for each study (optional, used for sensitivity analysis)

year

Publication year for temporal trend analysis and publication bias assessment

analysis_type

Type of meta-analysis to perform: Standard for combining effect sizes, Diagnostic for test accuracy studies, Network for multiple treatment comparisons

model_type

Random-effects is usually preferred as it accounts for differences between studies

effect_measure

Choose based on your outcome type: continuous (mean difference), binary (odds/risk ratio), time-to-event (hazard ratio), or association (correlation)

heterogeneity_method

Method for estimating between-study heterogeneity (tau-squared)

true_positives

True positives for diagnostic test accuracy meta-analysis

false_positives

False positives for diagnostic test accuracy meta-analysis

false_negatives

False negatives for diagnostic test accuracy meta-analysis

true_negatives

True negatives for diagnostic test accuracy meta-analysis

dta_model_type

Model type for diagnostic test accuracy meta-analysis

treatment_arm

Treatment arm identifier for network meta-analysis

comparison_arm

Comparison arm identifier for network meta-analysis

network_method

Statistical approach for network meta-analysis

publication_bias

Perform publication bias assessment using funnel plots and statistical tests

bias_tests

Statistical tests for publication bias assessment

subgroup_var

Categorical variable for subgroup analysis

moderator_vars

Variables for meta-regression analysis

meta_regression

Perform meta-regression analysis with moderator variables

sensitivity_analysis

Perform sensitivity analysis including leave-one-out and influence diagnostics

outlier_detection

Detect outlying studies using standardized residuals and influence measures

forest_plot_options

Enable forest plot customization options

prediction_interval

Include prediction intervals in forest plots and results

confidence_level

Confidence level for confidence and prediction intervals

robust_methods

Use robust methods for outlier-resistant meta-analysis

small_sample_correction

Apply small sample corrections (Hartung-Knapp adjustment)

knha_adjustment

Apply Knapp-Hartung adjustment for random-effects models

Value

A results object containing:

results$instructionsa html
results$studySummarya table
results$overallResultsa table
results$heterogeneityAssessmenta table
results$publicationBiasResultsa table
results$subgroupAnalysisa table
results$metaRegressionResultsa table
results$diagnosticAccuracyResultsa table
results$networkResultsa table
results$sensitivityAnalysisa table
results$outlierAnalysisa table
results$modelFitStatisticsa table
results$forestPlotan image
results$funnelPlotan image
results$heterogeneityPlotan image
results$metaRegressionPlotan image
results$srocPlotan image
results$networkPlotan image
results$methodExplanationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$studySummary$asDF

as.data.frame(results$studySummary)

Examples