Usage
missingdataexplorer(
  data,
  analysis_vars,
  group_var,
  time_var,
  id_var,
  pattern_analysis = TRUE,
  mechanism_testing = TRUE,
  correlation_analysis = TRUE,
  temporal_analysis = FALSE,
  group_comparison = FALSE,
  mcar_test = "little",
  min_pattern_freq = 0.05,
  max_patterns_display = 20,
  pattern_plot = TRUE,
  correlation_plot = TRUE,
  temporal_plot = FALSE,
  upset_plot = TRUE,
  cumulative_plot = FALSE,
  monotonic_test = TRUE,
  dropout_analysis = FALSE,
  informative_missingness = TRUE,
  completeness_threshold = 0.8,
  case_completeness = TRUE,
  variable_importance = TRUE,
  chi_square_test = TRUE,
  logistic_regression = FALSE,
  survival_analysis = FALSE,
  detailed_patterns = TRUE,
  summary_statistics = TRUE,
  clinical_interpretation = TRUE,
  export_patterns = FALSE
)Arguments
- data
- the data as a data frame 
- analysis_vars
- Variables to include in missing data pattern analysis 
- group_var
- Grouping variable for comparing missingness patterns (e.g., treatment arm, study site) 
- time_var
- Time variable for temporal missingness analysis (e.g., visit number, time since baseline) 
- id_var
- Subject identifier for longitudinal missingness analysis 
- pattern_analysis
- Analyze missing data patterns and frequencies 
- mechanism_testing
- Test missing data mechanisms (MCAR, MAR, MNAR) 
- correlation_analysis
- Analyze correlations between missingness indicators 
- temporal_analysis
- Analyze missingness patterns over time 
- group_comparison
- Compare missingness patterns between groups 
- mcar_test
- Method for testing Missing Completely At Random assumption 
- min_pattern_freq
- Minimum frequency for reporting missing data patterns (5\ - max_patterns_displayMaximum number of missing data patterns to display in detail - pattern_plotGenerate missing data pattern plots - correlation_plotGenerate missingness correlation heatmap - temporal_plotGenerate temporal missingness plots - upset_plotGenerate UpSet plot for pattern visualization - cumulative_plotGenerate cumulative missingness over variables plot - monotonic_testTest whether missingness follows monotonic patterns - dropout_analysisAnalyze dropout patterns in longitudinal data - informative_missingnessTest whether missingness is informative (related to outcomes) - completeness_thresholdThreshold for acceptable variable completeness (80\case_completenessAnalyze completeness at the case/subject levelvariable_importanceAssess which variables predict missingness in otherschi_square_testChi-square tests for independence of missingnesslogistic_regressionLogistic regression to predict missingness patternssurvival_analysisSurvival analysis for time to dropout/missingnessdetailed_patternsShow detailed information for each missing data patternsummary_statisticsInclude comprehensive summary statisticsclinical_interpretationProvide clinical interpretation and recommendationsexport_patternsExport missing data patterns for external analysis A results object containing: 
 Comprehensive missing data pattern exploration and visualization for clinical research. Analyzes missing data mechanisms, patterns, and correlations to inform imputation strategies. Includes advanced diagnostics for missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR) assessments. Essential for understanding missingness before imputation and for regulatory documentation of missing data handling strategies. data('clinical_data')missingdataexplorer( data = clinical_data, analysis_vars = c("primary_endpoint", "biomarker", "demographics"), group_var = "treatment_arm", pattern_analysis = TRUE, mechanism_testing = TRUE )