Implements mixed-effects Cox proportional hazards models for hierarchical survival data with random effects. Accounts for clustering, repeated measurements, and unobserved heterogeneity using the coxme framework for multi-level survival analysis in clinical research.
Usage
mixedeffectscox(
  data,
  elapsedtime,
  outcome,
  fixed_effects,
  random_effects,
  outcomeLevel = "1",
  random_structure = "random_intercept",
  correlation_structure = "independent",
  variance_structure = "homoscedastic",
  estimation_method = "reml",
  sparse_matrix = TRUE,
  ties_method = "efron",
  offset_variable,
  weights_variable,
  confidence_level = 0.95,
  max_iterations = 100,
  convergence_tolerance = 1e-06,
  random_effects_prediction = TRUE,
  variance_components_test = TRUE,
  bootstrap_ci = FALSE,
  bootstrap_samples = 500,
  show_model_summary = TRUE,
  show_fixed_effects = TRUE,
  show_random_effects = TRUE,
  show_diagnostics = TRUE,
  show_comparison = TRUE,
  show_residual_plots = TRUE,
  show_random_effects_plots = TRUE,
  show_survival_plots = TRUE,
  show_forest_plot = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)Arguments
- data
- the data as a data frame 
- elapsedtime
- Survival time or follow-up duration variable 
- outcome
- Event indicator variable (0/1, FALSE/TRUE, or factor) 
- fixed_effects
- Fixed effect covariates for the Cox model 
- random_effects
- Random effect grouping variables (clusters, subjects) 
- outcomeLevel
- Level of outcome variable indicating event occurrence 
- random_structure
- Structure of random effects in the model 
- correlation_structure
- Correlation structure for random effects 
- variance_structure
- Variance structure specification 
- estimation_method
- Method for estimating variance components 
- sparse_matrix
- Use sparse matrix methods for large datasets 
- ties_method
- Method for handling tied event times 
- offset_variable
- Optional offset variable for the model 
- weights_variable
- Optional case weights variable 
- confidence_level
- Confidence level for intervals 
- max_iterations
- Maximum number of iterations 
- convergence_tolerance
- Convergence tolerance for estimation 
- random_effects_prediction
- Compute and display random effects predictions (BLUPs) 
- variance_components_test
- Test significance of variance components 
- bootstrap_ci
- Compute bootstrap confidence intervals 
- bootstrap_samples
- Number of bootstrap samples 
- show_model_summary
- Display comprehensive model summary 
- show_fixed_effects
- Display fixed effects coefficients table 
- show_random_effects
- Display random effects and variance components 
- show_diagnostics
- Display model diagnostics 
- show_comparison
- Compare mixed-effects vs standard Cox models 
- show_residual_plots
- Display residual diagnostic plots 
- show_random_effects_plots
- Display random effects distribution plots 
- show_survival_plots
- Display survival curves by groups 
- show_forest_plot
- Display forest plot of hazard ratios 
- showSummaries
- Generate natural language summaries 
- showExplanations
- Show detailed methodology explanations 
Value
A results object containing:
| results$modelSummary | a table | ||||
| results$fixedEffects | a table | ||||
| results$randomEffects | a table | ||||
| results$varianceComponents | a table | ||||
| results$randomEffectsPredictions | a table | ||||
| results$diagnostics | a table | ||||
| results$modelComparison | a table | ||||
| results$convergenceInfo | a table | ||||
| results$hierarchicalStructure | a table | ||||
| results$iccAnalysis | a table | ||||
| results$residualPlots | an image | ||||
| results$randomEffectsPlots | an image | ||||
| results$survivalPlots | an image | ||||
| results$forestPlot | an image | ||||
| results$clusterAnalysisPlots | an image | ||||
| results$summaryTable | a html | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSummary$asDF
as.data.frame(results$modelSummary)