Skip to contents

Implements mixed-effects Cox proportional hazards models for hierarchical survival data with random effects. Accounts for clustering, repeated measurements, and unobserved heterogeneity using the coxme framework for multi-level survival analysis in clinical research.

Usage

mixedeffectscox(
  data,
  elapsedtime,
  outcome,
  fixed_effects,
  random_effects,
  outcomeLevel = "1",
  random_structure = "random_intercept",
  correlation_structure = "independent",
  variance_structure = "homoscedastic",
  estimation_method = "reml",
  sparse_matrix = TRUE,
  ties_method = "efron",
  offset_variable,
  weights_variable,
  confidence_level = 0.95,
  max_iterations = 100,
  convergence_tolerance = 1e-06,
  random_effects_prediction = TRUE,
  variance_components_test = TRUE,
  bootstrap_ci = FALSE,
  bootstrap_samples = 500,
  show_model_summary = TRUE,
  show_fixed_effects = TRUE,
  show_random_effects = TRUE,
  show_diagnostics = TRUE,
  show_comparison = TRUE,
  show_residual_plots = TRUE,
  show_random_effects_plots = TRUE,
  show_survival_plots = TRUE,
  show_forest_plot = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)

Arguments

data

the data as a data frame

elapsedtime

Survival time or follow-up duration variable

outcome

Event indicator variable (0/1, FALSE/TRUE, or factor)

fixed_effects

Fixed effect covariates for the Cox model

random_effects

Random effect grouping variables (clusters, subjects)

outcomeLevel

Level of outcome variable indicating event occurrence

random_structure

Structure of random effects in the model

correlation_structure

Correlation structure for random effects

variance_structure

Variance structure specification

estimation_method

Method for estimating variance components

sparse_matrix

Use sparse matrix methods for large datasets

ties_method

Method for handling tied event times

offset_variable

Optional offset variable for the model

weights_variable

Optional case weights variable

confidence_level

Confidence level for intervals

max_iterations

Maximum number of iterations

convergence_tolerance

Convergence tolerance for estimation

random_effects_prediction

Compute and display random effects predictions (BLUPs)

variance_components_test

Test significance of variance components

bootstrap_ci

Compute bootstrap confidence intervals

bootstrap_samples

Number of bootstrap samples

show_model_summary

Display comprehensive model summary

show_fixed_effects

Display fixed effects coefficients table

show_random_effects

Display random effects and variance components

show_diagnostics

Display model diagnostics

show_comparison

Compare mixed-effects vs standard Cox models

show_residual_plots

Display residual diagnostic plots

show_random_effects_plots

Display random effects distribution plots

show_survival_plots

Display survival curves by groups

show_forest_plot

Display forest plot of hazard ratios

showSummaries

Generate natural language summaries

showExplanations

Show detailed methodology explanations

Value

A results object containing:

results$modelSummarya table
results$fixedEffectsa table
results$randomEffectsa table
results$varianceComponentsa table
results$randomEffectsPredictionsa table
results$diagnosticsa table
results$modelComparisona table
results$convergenceInfoa table
results$hierarchicalStructurea table
results$iccAnalysisa table
results$residualPlotsan image
results$randomEffectsPlotsan image
results$survivalPlotsan image
results$forestPlotan image
results$clusterAnalysisPlotsan image
results$summaryTablea html
results$methodExplanationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$modelSummary$asDF

as.data.frame(results$modelSummary)

Examples

# Mixed-effects Cox model with random intercept
mixedeffectscox(
    data = hierarchical_data,
    elapsedtime = "time",
    outcome = "status",
    outcomeLevel = "1",
    fixed_effects = c("age", "treatment"),
    random_effects = c("hospital"),
    random_structure = "random_intercept"
)