Multiplex Immunofluorescence Analysis
Usage
multiplexanalysis(
  data,
  marker_vars,
  x_coord = NULL,
  y_coord = NULL,
  cell_type_var = NULL,
  sample_id_var = NULL,
  group_var = NULL,
  analysis_focus = "comprehensive",
  correlation_method = "pearson",
  positivity_cutpoint = 0.1,
  perform_clustering = TRUE,
  n_clusters = 0,
  perform_pca = TRUE,
  show_loadings = TRUE,
  immune_contexture = FALSE,
  diversity_metrics = TRUE,
  spatial_analysis = FALSE,
  proximity_threshold = 20,
  show_plots = TRUE,
  show_clustering_plots = TRUE,
  biomarker_panel = "custom",
  normalization_method = "zscore",
  multiple_testing = "fdr",
  confidence_level = 0.95
)Arguments
- data
- the data as a data frame 
- marker_vars
- expression levels or intensities for multiple biomarkers 
- x_coord
- X spatial coordinates for proximity analysis 
- y_coord
- Y spatial coordinates for proximity analysis 
- cell_type_var
- pre-defined cell type classifications 
- sample_id_var
- unique identifier for samples/regions 
- group_var
- grouping variable for comparative analysis 
- analysis_focus
- primary focus of multiplex analysis 
- correlation_method
- correlation method for co-expression analysis 
- positivity_cutpoint
- threshold for defining positive marker expression 
- perform_clustering
- identify cell populations through clustering 
- n_clusters
- number of clusters (0 = auto-determine) 
- perform_pca
- dimensionality reduction and visualization 
- show_loadings
- display loading vectors on PCA plot 
- immune_contexture
- calculate immunoscore and T-cell infiltration metrics 
- diversity_metrics
- Shannon and Simpson diversity for cellular composition 
- spatial_analysis
- cell-cell interaction analysis (requires coordinates) 
- proximity_threshold
- distance threshold for defining cell proximity 
- show_plots
- display correlation, PCA, and expression plots 
- show_clustering_plots
- display cluster analysis visualizations 
- biomarker_panel
- type of biomarker panel for optimized analysis 
- normalization_method
- normalization method for marker expressions 
- multiple_testing
- correction for multiple comparisons 
- confidence_level
- confidence level for statistical intervals 
Value
A results object containing:
| results$interpretation | a html | ||||
| results$expressiontable | Descriptive statistics for each biomarker | ||||
| results$correlationtable | Pairwise correlations between biomarkers | ||||
| results$clusteringtable | Identified cell clusters and phenotype suggestions | ||||
| results$pcatable | PCA results and variance explained | ||||
| results$correlationplot | Heatmap showing pairwise marker correlations | ||||
| results$heatmapplot | Comprehensive marker expression patterns | ||||
| results$pcaplot | PCA visualization with optional loading vectors | ||||
| results$clusterplot | Visualization of identified cell populations | ||||
| results$spatialanalysis$proximityresults | Distance-based interaction analysis | ||||
| results$spatialanalysis$spatialplot | an image | ||||
| results$immunecontexture$immunescores | T-cell infiltration and immune context metrics | ||||
| results$immunecontexture$immuneplot | an image | ||||
| results$diversityanalysis$diversitytable | Shannon, Simpson, and evenness indices | ||||
| results$qualitycontrol$qcmetrics | Missing data, outliers, and technical quality | ||||
| results$qualitycontrol$batcheffects | Analysis of systematic technical variation | ||||
| results$advancedanalysis$networkanalysis | Network-based marker interaction analysis | ||||
| results$advancedanalysis$pathwayenrichment | Biological pathway associations | ||||
| results$clinicalreport | Copy-ready clinical interpretation and summary | ||||
| results$exportdata | Formatted data for external analysis | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$expressiontable$asDF
as.data.frame(results$expressiontable)