Skip to contents

Multiplex Immunofluorescence Analysis

Usage

multiplexanalysis(
  data,
  marker_vars,
  x_coord = NULL,
  y_coord = NULL,
  cell_type_var = NULL,
  sample_id_var = NULL,
  group_var = NULL,
  analysis_focus = "comprehensive",
  correlation_method = "pearson",
  positivity_cutpoint = 0.1,
  perform_clustering = TRUE,
  n_clusters = 0,
  perform_pca = TRUE,
  show_loadings = TRUE,
  immune_contexture = FALSE,
  diversity_metrics = TRUE,
  spatial_analysis = FALSE,
  proximity_threshold = 20,
  show_plots = TRUE,
  show_clustering_plots = TRUE,
  biomarker_panel = "custom",
  normalization_method = "zscore",
  multiple_testing = "fdr",
  confidence_level = 0.95
)

Arguments

data

the data as a data frame

marker_vars

expression levels or intensities for multiple biomarkers

x_coord

X spatial coordinates for proximity analysis

y_coord

Y spatial coordinates for proximity analysis

cell_type_var

pre-defined cell type classifications

sample_id_var

unique identifier for samples/regions

group_var

grouping variable for comparative analysis

analysis_focus

primary focus of multiplex analysis

correlation_method

correlation method for co-expression analysis

positivity_cutpoint

threshold for defining positive marker expression

perform_clustering

identify cell populations through clustering

n_clusters

number of clusters (0 = auto-determine)

perform_pca

dimensionality reduction and visualization

show_loadings

display loading vectors on PCA plot

immune_contexture

calculate immunoscore and T-cell infiltration metrics

diversity_metrics

Shannon and Simpson diversity for cellular composition

spatial_analysis

cell-cell interaction analysis (requires coordinates)

proximity_threshold

distance threshold for defining cell proximity

show_plots

display correlation, PCA, and expression plots

show_clustering_plots

display cluster analysis visualizations

biomarker_panel

type of biomarker panel for optimized analysis

normalization_method

normalization method for marker expressions

multiple_testing

correction for multiple comparisons

confidence_level

confidence level for statistical intervals

Value

A results object containing:

results$interpretationa html
results$expressiontableDescriptive statistics for each biomarker
results$correlationtablePairwise correlations between biomarkers
results$clusteringtableIdentified cell clusters and phenotype suggestions
results$pcatablePCA results and variance explained
results$correlationplotHeatmap showing pairwise marker correlations
results$heatmapplotComprehensive marker expression patterns
results$pcaplotPCA visualization with optional loading vectors
results$clusterplotVisualization of identified cell populations
results$spatialanalysis$proximityresultsDistance-based interaction analysis
results$spatialanalysis$spatialplotan image
results$immunecontexture$immunescoresT-cell infiltration and immune context metrics
results$immunecontexture$immuneplotan image
results$diversityanalysis$diversitytableShannon, Simpson, and evenness indices
results$qualitycontrol$qcmetricsMissing data, outliers, and technical quality
results$qualitycontrol$batcheffectsAnalysis of systematic technical variation
results$advancedanalysis$networkanalysisNetwork-based marker interaction analysis
results$advancedanalysis$pathwayenrichmentBiological pathway associations
results$clinicalreportCopy-ready clinical interpretation and summary
results$exportdataFormatted data for external analysis

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$expressiontable$asDF

as.data.frame(results$expressiontable)