Multistate models for analyzing disease progression through multiple states. Implements transition probabilities, state occupation probabilities, and competing transitions for complex disease pathways in clinical research.
Usage
multistatesurvival(
data,
id,
time_start,
time_stop,
state_from,
state_to,
covariates,
model_type = "markov",
transition_matrix = "auto",
state_names = "",
initial_state = "1",
absorbing_states = "",
transition_probabilities = TRUE,
state_probabilities = TRUE,
sojourn_times = TRUE,
hazard_ratios = TRUE,
prediction_times = "6,12,24,60",
plot_transitions = TRUE,
plot_probabilities = TRUE,
plot_cumhazard = TRUE,
plot_individual = FALSE,
competing_risks = TRUE,
time_varying = FALSE,
stratified,
confidence_level = 0.95,
bootstrap_ci = FALSE,
n_bootstrap = 1000
)Arguments
- data
The data as a data frame.
- id
Patient ID variable for tracking individuals
- time_start
Start time of observation period
- time_stop
End time of observation period
- state_from
State at beginning of interval
- state_to
State at end of interval
- covariates
Variables influencing state transitions
- model_type
Multistate model type specification
- transition_matrix
Transition matrix specification
- state_names
Custom names for model states
- initial_state
Starting state specification
- absorbing_states
States from which no transitions occur
- transition_probabilities
Compute transition probability matrix
- state_probabilities
Compute state occupation probabilities
- sojourn_times
Compute mean sojourn times
- hazard_ratios
Compute transition-specific hazard ratios
- prediction_times
Times at which to evaluate probabilities
- plot_transitions
Generate transition diagram plot
- plot_probabilities
Generate probability curves
- plot_cumhazard
Generate cumulative hazard plots
- plot_individual
Create individual-level predictions
- competing_risks
Use competing risks framework
- time_varying
Include time-varying effects
- stratified
Stratification variable
- confidence_level
Confidence interval level
- bootstrap_ci
Bootstrap-based inference
- n_bootstrap
Bootstrap iterations
Value
A results object containing:
results$todo | a html | ||||
results$summary | a html | ||||
results$transitionMatrix | a table | ||||
results$stateTable | a table | ||||
results$hazardTable | a table | ||||
results$sojournTable | a table | ||||
results$transitionPlot | an image | ||||
results$probabilityPlot | an image | ||||
results$cumhazardPlot | an image | ||||
results$individualPredictions | a table | ||||
results$modelFit | a table | ||||
results$stratifiedResults | a html | ||||
results$interpretation | a html |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$transitionMatrix$asDF
as.data.frame(results$transitionMatrix)
Examples
# \donttest{
# Example: Cancer progression model
# States: Diagnosis -> Remission -> Relapse -> Death
# -> Death (direct)
multistatesurvival(
data = cancer_data,
id = patient_id,
time = follow_up_time,
state = disease_state,
covariates = c(age, stage, treatment)
)
# }