Skip to contents

Multistate models for analyzing disease progression through multiple states. Implements transition probabilities, state occupation probabilities, and competing transitions for complex disease pathways in clinical research.

Usage

multistatesurvival(
  data,
  id,
  time_start,
  time_stop,
  state_from,
  state_to,
  covariates,
  model_type = "markov",
  transition_matrix = "auto",
  state_names = "",
  initial_state = "1",
  absorbing_states = "",
  transition_probabilities = TRUE,
  state_probabilities = TRUE,
  sojourn_times = TRUE,
  hazard_ratios = TRUE,
  prediction_times = "6,12,24,60",
  plot_transitions = TRUE,
  plot_probabilities = TRUE,
  plot_cumhazard = TRUE,
  plot_individual = FALSE,
  competing_risks = TRUE,
  time_varying = FALSE,
  stratified,
  confidence_level = 0.95,
  bootstrap_ci = FALSE,
  n_bootstrap = 1000
)

Arguments

data

The data as a data frame.

id

Patient ID variable for tracking individuals

time_start

Start time of observation period

time_stop

End time of observation period

state_from

State at beginning of interval

state_to

State at end of interval

covariates

Variables influencing state transitions

model_type

Multistate model type specification

transition_matrix

Transition matrix specification

state_names

Custom names for model states

initial_state

Starting state specification

absorbing_states

States from which no transitions occur

transition_probabilities

Compute transition probability matrix

state_probabilities

Compute state occupation probabilities

sojourn_times

Compute mean sojourn times

hazard_ratios

Compute transition-specific hazard ratios

prediction_times

Times at which to evaluate probabilities

plot_transitions

Generate transition diagram plot

plot_probabilities

Generate probability curves

plot_cumhazard

Generate cumulative hazard plots

plot_individual

Create individual-level predictions

competing_risks

Use competing risks framework

time_varying

Include time-varying effects

stratified

Stratification variable

confidence_level

Confidence interval level

bootstrap_ci

Bootstrap-based inference

n_bootstrap

Bootstrap iterations

Value

A results object containing:

results$todoa html
results$summarya html
results$transitionMatrixa table
results$stateTablea table
results$hazardTablea table
results$sojournTablea table
results$transitionPlotan image
results$probabilityPlotan image
results$cumhazardPlotan image
results$individualPredictionsa table
results$modelFita table
results$stratifiedResultsa html
results$interpretationa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$transitionMatrix$asDF

as.data.frame(results$transitionMatrix)

Examples

# \donttest{
# Example: Cancer progression model
# States: Diagnosis -> Remission -> Relapse -> Death
#                   -> Death (direct)
multistatesurvival(
    data = cancer_data,
    id = patient_id,
    time = follow_up_time,
    state = disease_state,
    covariates = c(age, stage, treatment)
)
# }