Smoothly Clipped Absolute Deviation (SCAD) Cox regression for high-dimensional survival data. SCAD provides automatic variable selection with oracle properties, avoiding over-penalization of large coefficients while maintaining sparsity for small coefficients. Particularly useful for genomics and high-dimensional clinical data where interpretable variable selection is crucial.
Usage
ncvregcox(
  data,
  time,
  event,
  covariates,
  penalty = "SCAD",
  cv_folds = 10,
  lambda_type = "min",
  alpha = 1,
  gamma = 3.7,
  standardize = TRUE,
  plot_path = TRUE,
  plot_cv = TRUE,
  variable_importance = TRUE
)Arguments
- data
- the data as a data frame 
- time
- survival time variable 
- event
- event indicator (1=event, 0=censored) 
- covariates
- predictor variables for high-dimensional analysis 
- penalty
- Type of penalty function for variable selection 
- cv_folds
- Number of folds for cross-validation 
- lambda_type
- Lambda selection criterion 
- alpha
- Mixing parameter for elastic net (1=lasso, 0=ridge) 
- gamma
- SCAD gamma parameter or MCP gamma parameter 
- standardize
- Standardize covariates before fitting 
- plot_path
- Display coefficient paths plot 
- plot_cv
- Display cross-validation error plot 
- variable_importance
- Calculate and display variable importance metrics 
Value
A results object containing:
| results$instructions | a html | ||||
| results$model_summary | a table | ||||
| results$selected_variables | a table | ||||
| results$variable_importance | a table | ||||
| results$cross_validation_results | a table | ||||
| results$model_comparison | a table | ||||
| results$convergence_info | a table | ||||
| results$regularization_path | an image | ||||
| results$cv_error_plot | an image | ||||
| results$variable_selection_plot | an image | ||||
| results$coefficient_comparison | an image | ||||
| results$model_interpretation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$model_summary$asDF
as.data.frame(results$model_summary)
Examples
ncvregcox(
    data = data,
    time = "time",
    event = "event",
    covariates = c("x1", "x2", "x3"),
    penalty = "SCAD",
    cv_folds = 10,
    lambda_type = "min"
)