Skip to contents

Implements parametric frailty models for survival analysis with clustered or correlated survival data. Uses the frailtySurv package for efficient estimation of parametric baseline distributions combined with frailty components to model unobserved heterogeneity between clusters or individuals.

Usage

parametricfrailty(
  data,
  elapsedtime,
  outcome,
  covariates = NULL,
  frailty_variable,
  baseline_distribution = "weibull",
  frailty_distribution = "gamma",
  estimation_method = "penalized_likelihood",
  include_se = TRUE,
  include_ci = TRUE,
  conf_level = 0.95,
  frailty_variance = TRUE,
  frailty_predictions = FALSE,
  gof_tests = FALSE,
  plot_hazard = FALSE,
  plot_survival = FALSE,
  plot_frailty = FALSE,
  plot_diagnostics = FALSE
)

Arguments

data

the data as a data frame

elapsedtime

Survival time or follow-up duration variable. Should contain positive numeric values representing the time to event or censoring.

outcome

Binary event indicator variable. Should contain values like 0/1, FALSE/TRUE, or factor levels indicating whether event occurred.

covariates

Vector of variable names for covariates/explanatory variables to include in the parametric frailty model.

frailty_variable

Variable identifying clusters or groups for frailty modeling. Each unique value represents a different cluster/group with shared frailty.

baseline_distribution

Baseline parametric distribution for survival times.

frailty_distribution

Distribution of the frailty random effects.

estimation_method

Method for parameter estimation in the frailty model.

include_se

Whether to compute and display standard errors for parameter estimates.

include_ci

Whether to compute and display confidence intervals for parameter estimates.

conf_level

Confidence level for confidence intervals (between 0.5 and 0.99).

frailty_variance

Whether to estimate and display frailty variance components.

frailty_predictions

Whether to compute individual frailty predictions for each cluster.

gof_tests

Whether to perform goodness-of-fit tests for the fitted model.

plot_hazard

Whether to create plots of the estimated hazard function.

plot_survival

Whether to create plots of the estimated survival function.

plot_frailty

Whether to create plots of the frailty distribution.

plot_diagnostics

Whether to create model diagnostic plots for residuals and fit assessment.

Value

A results object containing:

results$overviewOverview of the parametric frailty model analysis
results$model_fitModel fit statistics for the parametric frailty model
results$coefficientsParameter estimates for the parametric frailty model
results$frailty_summarySummary statistics for frailty terms
results$frailty_predictions_tableIndividual frailty predictions for each subject/group
results$gof_tableGoodness-of-fit tests for the parametric frailty model
results$hazard_plotPlot of the estimated hazard function
results$survival_plotPlot of the estimated survival function
results$frailty_plotPlot of the frailty distribution
results$diagnostics_plotModel diagnostic plots
results$model_summaryComprehensive model summary and interpretation

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$overview$asDF

as.data.frame(results$overview)

Examples

data('lung', package='survival')

parametricfrailty(data = lung,
                 elapsedtime = 'time',
                 outcome = 'status',
                 covariates = c('age', 'sex'),
                 frailty_variable = 'inst',
                 baseline_distribution = 'weibull',
                 frailty_distribution = 'gamma')