Enhanced Partial Correlation Analysis with BlueSky Integration
Source:R/partialcorrelation.h.R
partialcorrelation.RdEnhanced partial correlation analysis toolkit with BlueSky integration for comprehensive correlation analysis while controlling for confounding variables. Includes partial and semi-partial correlations, robust error handling, multiple variable support, and advanced statistical inference. Perfect for clinicopathological research where controlling for covariates is essential.
Usage
partialcorrelation(
data,
vars,
controls,
method = "pearson",
ci = TRUE,
ciWidth = 95,
sig = TRUE,
sigLevel = 0.05,
matrixPlot = FALSE,
showZeroOrder = TRUE,
correlationType = "partial",
multipleComparison = "none",
robustErrorHandling = TRUE,
showDiagnostics = FALSE,
detailedOutput = FALSE,
bootstrapCI = FALSE,
bootstrapSamples = 1000,
showEffectSizes = TRUE,
assumptionChecks = FALSE,
clinicalInterpretation = TRUE,
showRecommendations = FALSE,
bluesky_integration = TRUE,
comprehensive_output = FALSE
)Arguments
- data
.
- vars
.
- controls
.
- method
.
- ci
.
- ciWidth
.
- sig
.
- sigLevel
.
- matrixPlot
.
- showZeroOrder
.
- correlationType
Type of correlation analysis (BlueSky BSkyPartialSemiCorrelations feature)
- multipleComparison
Method for correcting p-values for multiple comparisons
- robustErrorHandling
Use BlueSky-style error handling with graceful degradation
- showDiagnostics
Display diagnostic information about computations and assumptions
- detailedOutput
Include comprehensive statistical details and interpretations
- bootstrapCI
Calculate bootstrap confidence intervals for correlations
- bootstrapSamples
Number of bootstrap samples for confidence intervals
- showEffectSizes
Include Cohen's interpretation of correlation effect sizes
- assumptionChecks
Perform and report assumption checks for correlation analysis
- clinicalInterpretation
Provide clinical context and interpretation guidance
- showRecommendations
Provide recommendations based on analysis results
- bluesky_integration
Use BlueSky R statistical environment features
- comprehensive_output
Include comprehensive statistical details and diagnostics
Value
A results object containing:
results$instructions | a html | ||||
results$partialCorr | a table | ||||
results$zeroOrder | a table | ||||
results$semipartialCorr | a table | ||||
results$diagnostics | Computational diagnostics and assumption checks | ||||
results$assumptionResults | Results of statistical assumption testing | ||||
results$comprehensiveAnalysisSummary | Enhanced statistical summary with BlueSky integration | ||||
results$recommendations | a html | ||||
results$clinicalInterpretationGuide | a html | ||||
results$methodsExplanation | a html | ||||
results$plot | an image | ||||
results$partialCorrelationNetwork | an image | ||||
results$effectSizePlot | an image |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$partialCorr$asDF
as.data.frame(results$partialCorr)