Patient-Reported Outcomes & Quality of Life Analysis
Source:R/patientreported.h.R
patientreported.RdUsage
patientreported(
data,
scale_items,
patient_id,
time_var,
group_var,
demographic_vars,
scale_type = "generic_qol",
instrument_name = "custom",
scoring_method = "sum_score",
reverse_coded_items,
response_scale_min = 1,
response_scale_max = 5,
reliability_analysis = TRUE,
validity_analysis = TRUE,
factor_analysis = FALSE,
irt_analysis = FALSE,
dimensionality_test = TRUE,
measurement_invariance = FALSE,
missing_data_method = "pro_rata_scoring",
min_items_required = 2,
missing_threshold = 0.5,
clinical_interpretation = TRUE,
normative_comparison = FALSE,
minimal_important_difference = TRUE,
mid_value = 5,
ceiling_floor_effects = TRUE,
longitudinal_analysis = FALSE,
change_analysis = "simple_change",
trajectory_analysis = FALSE,
time_to_deterioration = FALSE,
group_comparisons = FALSE,
comparison_method = "t_test",
effect_size_analysis = TRUE,
multiple_comparisons = "fdr",
responder_analysis = FALSE,
responder_threshold = 10,
anchor_based_analysis = FALSE,
anchor_variables,
distribution_based_analysis = TRUE,
data_quality_assessment = TRUE,
response_patterns = TRUE,
acquiescence_analysis = FALSE,
detailed_output = TRUE,
summary_report = TRUE,
individual_profiles = FALSE,
save_scores = FALSE,
regulatory_documentation = TRUE
)Arguments
- data
the data as a data frame
- scale_items
Items/questions that comprise the PRO scale or questionnaire
- patient_id
Patient identifier for longitudinal analysis
- time_var
Time point variable for longitudinal PRO analysis (visit, week, etc.)
- group_var
Grouping variable for between-group PRO comparisons (treatment, disease stage, etc.)
- demographic_vars
Demographic variables for subgroup analysis and validation
- scale_type
Type of PRO scale being analyzed
- instrument_name
Standardized PRO instrument being used
- scoring_method
Method for calculating PRO scale scores
- reverse_coded_items
Items that need to be reverse-coded before scoring
- response_scale_min
Minimum value of the response scale (e.g., 1 for 1-5 Likert scale)
- response_scale_max
Maximum value of the response scale (e.g., 5 for 1-5 Likert scale)
- reliability_analysis
Perform reliability analysis (Cronbach's alpha, item-total correlations)
- validity_analysis
Perform validity analysis (construct validity, concurrent validity)
- factor_analysis
Perform exploratory and confirmatory factor analysis
- irt_analysis
Perform IRT analysis for item characteristics and scale properties
- dimensionality_test
Test scale dimensionality and factor structure
- measurement_invariance
Test measurement invariance across groups and time points
- missing_data_method
Method for handling missing item responses
- min_items_required
Minimum number of non-missing items required for scale scoring
- missing_threshold
Maximum proportion of missing items allowed for scoring (50\
clinical_interpretationProvide clinical interpretation of PRO scores
normative_comparisonCompare scores to published normative data
minimal_important_differenceAnalyze changes relative to minimal important difference (MID)
mid_valueMinimal important difference value for clinical significance
ceiling_floor_effectsAnalyze ceiling and floor effects in PRO responses
longitudinal_analysisPerform longitudinal PRO analysis
change_analysisMethod for analyzing PRO changes over time
trajectory_analysisAnalyze PRO trajectories and patterns over time
time_to_deteriorationAnalyze time to meaningful PRO deterioration
group_comparisonsCompare PRO scores between groups
comparison_methodStatistical method for group comparisons
effect_size_analysisCalculate effect sizes for group differences
multiple_comparisonsMethod for multiple comparisons correction
responder_analysisAnalyze proportion of patients with meaningful improvements
responder_thresholdThreshold for defining treatment responders
anchor_based_analysisUse anchor variables to interpret PRO changes
anchor_variablesExternal anchor variables for interpreting PRO changes
distribution_based_analysisUse distribution-based methods for interpreting changes
data_quality_assessmentAssess PRO data quality and completion patterns
response_patternsAnalyze response patterns and potential response bias
acquiescence_analysisAnalyze acquiescence and extreme response styles
detailed_outputInclude detailed psychometric and clinical analysis results
summary_reportGenerate comprehensive PRO analysis summary report
individual_profilesGenerate individual patient PRO profiles
save_scoresSave calculated PRO scores to dataset
regulatory_documentationInclude documentation for regulatory submissions
A results object containing:
results$scale_overview | a table | ||||
results$data_summary | a table | ||||
results$item_statistics | a table | ||||
results$item_correlations | a table | ||||
results$reliability_results | a table | ||||
results$item_reliability | a table | ||||
results$validity_results | a table | ||||
results$factor_analysis_results | a table | ||||
results$factor_loadings | a table | ||||
results$scale_scores | a table | ||||
results$score_distribution | a table | ||||
results$group_comparison_results | a table | ||||
results$group_descriptives | a table | ||||
results$longitudinal_results | a table | ||||
results$change_analysis_results | a table | ||||
results$clinical_interpretation_results | a table | ||||
results$minimal_important_difference_results | a table | ||||
results$data_quality_results | a table | ||||
results$missing_data_patterns | a table | ||||
results$response_patterns | a table | ||||
results$responder_analysis_results | a table | ||||
results$regulatory_summary | a table | ||||
results$item_distribution_plot | an image | ||||
results$scale_distribution_plot | an image | ||||
results$reliability_plot | an image | ||||
results$factor_plot | an image | ||||
results$group_comparison_plot | an image | ||||
results$longitudinal_plot | an image | ||||
results$change_plot | an image | ||||
results$responder_plot | an image | ||||
results$missing_data_plot | an image | ||||
results$correlation_heatmap | an image |
asDF or as.data.frame. For example:results$scale_overview$asDFas.data.frame(results$scale_overview)
Comprehensive analysis of Patient-Reported Outcomes (PRO) and Quality of
Life (QoL) data
for clinical research. Includes psychometric validation, score calculation,
change analysis,
and clinical interpretation. Supports standardized instruments (SF-36,
EORTC QLQ-C30,
FACT-G, etc.) and custom questionnaires with missing data handling and
longitudinal analysis.
Essential for patient-centered outcomes research and clinical trials.
data('pro_data')patientreported(
data = pro_data,
scale_items = c("item1", "item2", "item3"),
patient_id = "patient_id",
time_var = "visit_number",
reliability_analysis = TRUE,
validity_analysis = TRUE
)