Patient-Reported Outcomes & Quality of Life Analysis
Source:R/patientreported.h.R
      patientreported.RdUsage
patientreported(
  data,
  scale_items,
  patient_id,
  time_var,
  group_var,
  demographic_vars,
  scale_type = "generic_qol",
  instrument_name = "custom",
  scoring_method = "sum_score",
  reverse_coded_items,
  response_scale_min = 1,
  response_scale_max = 5,
  reliability_analysis = TRUE,
  validity_analysis = TRUE,
  factor_analysis = FALSE,
  irt_analysis = FALSE,
  dimensionality_test = TRUE,
  measurement_invariance = FALSE,
  missing_data_method = "pro_rata_scoring",
  min_items_required = 2,
  missing_threshold = 0.5,
  clinical_interpretation = TRUE,
  normative_comparison = FALSE,
  minimal_important_difference = TRUE,
  mid_value = 5,
  ceiling_floor_effects = TRUE,
  longitudinal_analysis = FALSE,
  change_analysis = "simple_change",
  trajectory_analysis = FALSE,
  time_to_deterioration = FALSE,
  group_comparisons = FALSE,
  comparison_method = "t_test",
  effect_size_analysis = TRUE,
  multiple_comparisons = "fdr",
  responder_analysis = FALSE,
  responder_threshold = 10,
  anchor_based_analysis = FALSE,
  anchor_variables,
  distribution_based_analysis = TRUE,
  data_quality_assessment = TRUE,
  response_patterns = TRUE,
  acquiescence_analysis = FALSE,
  detailed_output = TRUE,
  summary_report = TRUE,
  individual_profiles = FALSE,
  save_scores = FALSE,
  regulatory_documentation = TRUE
)Arguments
- data
- the data as a data frame 
- scale_items
- Items/questions that comprise the PRO scale or questionnaire 
- patient_id
- Patient identifier for longitudinal analysis 
- time_var
- Time point variable for longitudinal PRO analysis (visit, week, etc.) 
- group_var
- Grouping variable for between-group PRO comparisons (treatment, disease stage, etc.) 
- demographic_vars
- Demographic variables for subgroup analysis and validation 
- scale_type
- Type of PRO scale being analyzed 
- instrument_name
- Standardized PRO instrument being used 
- scoring_method
- Method for calculating PRO scale scores 
- reverse_coded_items
- Items that need to be reverse-coded before scoring 
- response_scale_min
- Minimum value of the response scale (e.g., 1 for 1-5 Likert scale) 
- response_scale_max
- Maximum value of the response scale (e.g., 5 for 1-5 Likert scale) 
- reliability_analysis
- Perform reliability analysis (Cronbach's alpha, item-total correlations) 
- validity_analysis
- Perform validity analysis (construct validity, concurrent validity) 
- factor_analysis
- Perform exploratory and confirmatory factor analysis 
- irt_analysis
- Perform IRT analysis for item characteristics and scale properties 
- dimensionality_test
- Test scale dimensionality and factor structure 
- measurement_invariance
- Test measurement invariance across groups and time points 
- missing_data_method
- Method for handling missing item responses 
- min_items_required
- Minimum number of non-missing items required for scale scoring 
- missing_threshold
- Maximum proportion of missing items allowed for scoring (50\ - clinical_interpretationProvide clinical interpretation of PRO scores - normative_comparisonCompare scores to published normative data - minimal_important_differenceAnalyze changes relative to minimal important difference (MID) - mid_valueMinimal important difference value for clinical significance - ceiling_floor_effectsAnalyze ceiling and floor effects in PRO responses - longitudinal_analysisPerform longitudinal PRO analysis - change_analysisMethod for analyzing PRO changes over time - trajectory_analysisAnalyze PRO trajectories and patterns over time - time_to_deteriorationAnalyze time to meaningful PRO deterioration - group_comparisonsCompare PRO scores between groups - comparison_methodStatistical method for group comparisons - effect_size_analysisCalculate effect sizes for group differences - multiple_comparisonsMethod for multiple comparisons correction - responder_analysisAnalyze proportion of patients with meaningful improvements - responder_thresholdThreshold for defining treatment responders - anchor_based_analysisUse anchor variables to interpret PRO changes - anchor_variablesExternal anchor variables for interpreting PRO changes - distribution_based_analysisUse distribution-based methods for interpreting changes - data_quality_assessmentAssess PRO data quality and completion patterns - response_patternsAnalyze response patterns and potential response bias - acquiescence_analysisAnalyze acquiescence and extreme response styles - detailed_outputInclude detailed psychometric and clinical analysis results - summary_reportGenerate comprehensive PRO analysis summary report - individual_profilesGenerate individual patient PRO profiles - save_scoresSave calculated PRO scores to dataset - regulatory_documentationInclude documentation for regulatory submissions 
A results object containing:
| results$scale_overview | a table | ||||
| results$data_summary | a table | ||||
| results$item_statistics | a table | ||||
| results$item_correlations | a table | ||||
| results$reliability_results | a table | ||||
| results$item_reliability | a table | ||||
| results$validity_results | a table | ||||
| results$factor_analysis_results | a table | ||||
| results$factor_loadings | a table | ||||
| results$scale_scores | a table | ||||
| results$score_distribution | a table | ||||
| results$group_comparison_results | a table | ||||
| results$group_descriptives | a table | ||||
| results$longitudinal_results | a table | ||||
| results$change_analysis_results | a table | ||||
| results$clinical_interpretation_results | a table | ||||
| results$minimal_important_difference_results | a table | ||||
| results$data_quality_results | a table | ||||
| results$missing_data_patterns | a table | ||||
| results$response_patterns | a table | ||||
| results$responder_analysis_results | a table | ||||
| results$regulatory_summary | a table | ||||
| results$item_distribution_plot | an image | ||||
| results$scale_distribution_plot | an image | ||||
| results$reliability_plot | an image | ||||
| results$factor_plot | an image | ||||
| results$group_comparison_plot | an image | ||||
| results$longitudinal_plot | an image | ||||
| results$change_plot | an image | ||||
| results$responder_plot | an image | ||||
| results$missing_data_plot | an image | ||||
| results$correlation_heatmap | an image | 
asDF or as.data.frame. For example:results$scale_overview$asDFas.data.frame(results$scale_overview)
Comprehensive analysis of Patient-Reported Outcomes (PRO) and Quality of
Life (QoL) data
for clinical research. Includes psychometric validation, score calculation,
change analysis,
and clinical interpretation. Supports standardized instruments (SF-36,
EORTC QLQ-C30,
FACT-G, etc.) and custom questionnaires with missing data handling and
longitudinal analysis.
Essential for patient-centered outcomes research and clinical trials.
data('pro_data')patientreported(
    data = pro_data,
    scale_items = c("item1", "item2", "item3"),
    patient_id = "patient_id",
    time_var = "visit_number",
    reliability_analysis = TRUE,
    validity_analysis = TRUE
)