Principal Component Analysis for Cox regression with high-dimensional predictors. Reduces dimensionality while preserving survival-relevant information using supervised PCA.
Usage
pcacox(
  data,
  time,
  status,
  predictors,
  clinical_vars,
  pca_method = "supervised",
  n_components = 5,
  component_selection = "cv",
  cv_folds = 10,
  variance_threshold = 0.8,
  scaling = TRUE,
  centering = TRUE,
  survival_weighting = TRUE,
  permutation_test = FALSE,
  n_permutations = 100,
  bootstrap_validation = TRUE,
  n_bootstrap = 100,
  plot_scree = TRUE,
  plot_loadings = TRUE,
  plot_biplot = TRUE,
  plot_survival = TRUE,
  risk_score = TRUE,
  pathway_analysis = FALSE,
  feature_importance = TRUE
)Arguments
- data
- The data as a data frame. 
- time
- Survival time variable 
- status
- Event status variable 
- predictors
- Variables for principal component analysis 
- clinical_vars
- Clinical predictors to retain in model 
- pca_method
- PCA methodology for dimensionality reduction 
- n_components
- Number of PCs to include in Cox model 
- component_selection
- Selection criteria for PCs 
- cv_folds
- K-fold CV parameter 
- variance_threshold
- Proportion of variance threshold 
- scaling
- Center and scale variables 
- centering
- Center variables to zero mean 
- survival_weighting
- Use survival information in PCA 
- permutation_test
- Test component significance via permutation 
- n_permutations
- Permutation sample size 
- bootstrap_validation
- Assess model stability via bootstrap 
- n_bootstrap
- Bootstrap sample size 
- plot_scree
- Generate scree plot 
- plot_loadings
- Generate loading visualizations 
- plot_biplot
- Generate biplot visualization 
- plot_survival
- Generate survival stratification plots 
- risk_score
- Calculate combined risk score 
- pathway_analysis
- Analyze biological pathways 
- feature_importance
- Rank features by contribution 
Value
A results object containing:
| results$todo | a html | ||||
| results$summary | a html | ||||
| results$pcaSummary | a table | ||||
| results$coxResults | a table | ||||
| results$componentLoadings | a table | ||||
| results$modelPerformance | a table | ||||
| results$featureImportance | a table | ||||
| results$riskScore | a table | ||||
| results$screePlot | an image | ||||
| results$loadingsPlot | an image | ||||
| results$biplot | an image | ||||
| results$survivalPlot | an image | ||||
| results$crossValidation | a html | ||||
| results$bootstrapValidation | a html | ||||
| results$permutationTest | a html | ||||
| results$pathwayAnalysis | a html | ||||
| results$technicalDetails | a html | ||||
| results$clinicalInterpretation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$pcaSummary$asDF
as.data.frame(results$pcaSummary)