Skip to contents

Creates heatmap and barmap visualizations of PCA loadings for easy interpretation of component structure. Heatmaps show all loadings as a color-coded matrix, while barmaps display loading patterns as bar charts across components.

Usage

pcaloadingheatmap(
  data,
  vars,
  ncomp = 4,
  cutoff = 0.5,
  center = TRUE,
  scale = TRUE,
  textvalues = TRUE,
  starvalues = FALSE,
  textsize = 2,
  plotlegend = TRUE,
  plotcutoff = TRUE,
  gradientcolor = TRUE,
  colorlow = "steelblue1",
  colormid = "white",
  colorhigh = "firebrick1",
  plotwidth = 600,
  plotheight = 450
)

Arguments

data

The data as a data frame.

vars

Continuous variables to include in Principal Component Analysis. Select at least 3 numeric variables.

ncomp

Number of principal components to display (1 to 10).

cutoff

Threshold for marking loadings as significant (0 to 1). Loadings with |loading| >= cutoff will be marked with stars if star_values is enabled.

center

Center variables before PCA.

scale

Scale variables before PCA.

textvalues

Display numeric loading values in heatmap/barmap cells.

starvalues

Display stars (*) for loadings >= cutoff threshold. Only relevant if textvalues is FALSE.

textsize

Font size for text in plots.

plotlegend

Display legend in barmap plot.

plotcutoff

Display horizontal lines at ±cutoff threshold in barmap.

gradientcolor

Use gradient colors proportional to loading values. If FALSE, uses binary colors for positive/negative.

colorlow

Color for negative loadings.

colormid

Midpoint color for zero loading.

colorhigh

Color for positive loadings.

plotwidth

Width of plots in pixels.

plotheight

Height of plots in pixels.

Value

A results object containing:

results$todoa html
results$heatmapHeatmap visualization of PCA loadings across components
results$barmapBarmap visualization of PCA loadings showing magnitude and direction

Details

Both visualizations support optional significance indicators (stars) for loadings above a specified cutoff threshold. These publication-ready plots help identify which variables contribute most strongly to each component.

References

Torres-Espin A, Chou A, Huie JR, et al. (2021). Reproducible analysis of disease space via principal components using the novel R package syndRomics. eLife, 10:e61812.

Examples

# Example with mtcars dataset
data("mtcars")

# Create loading heatmap and barmap
pcaloadingheatmap(
  data = mtcars,
  vars = c("mpg", "disp", "hp", "drat", "wt", "qsec"),
  ncomp = 4,
  cutoff = 0.5,
  center = TRUE,
  scale = TRUE,
  textvalues = TRUE,
  gradientcolor = TRUE
)