Partial Least Squares Cox regression for high-dimensional survival data. Combines PLS dimensionality reduction with Cox proportional hazards modeling for analysis of genomic, proteomic, and other high-dimensional datasets.
Usage
plscox(
  time,
  status,
  predictors,
  pls_components = 5,
  cross_validation = "k10",
  component_selection = "cv_loglik",
  scaling_method = "standardize",
  pls_algorithm = "nipals",
  max_iterations = 100,
  tolerance = 1e-06,
  bootstrap_validation = FALSE,
  n_bootstrap = 200,
  permutation_test = FALSE,
  n_permutations = 100,
  plot_components = TRUE,
  plot_loadings = TRUE,
  plot_scores = TRUE,
  plot_validation = TRUE,
  plot_survival = TRUE,
  risk_groups = 3,
  confidence_intervals = TRUE,
  feature_importance = TRUE,
  prediction_accuracy = TRUE
)Arguments
- time
- . 
- status
- . 
- predictors
- . 
- pls_components
- Number of PLS components to extract 
- cross_validation
- Cross-validation method for component selection 
- component_selection
- Method for selecting optimal number of components 
- scaling_method
- Method for scaling predictor variables 
- pls_algorithm
- Algorithm for PLS computation 
- max_iterations
- Maximum iterations for PLS algorithm convergence 
- tolerance
- Tolerance for algorithm convergence 
- bootstrap_validation
- Perform bootstrap validation of model performance 
- n_bootstrap
- Number of bootstrap replications 
- permutation_test
- Perform permutation test for variable importance 
- n_permutations
- Number of permutations for significance testing 
- plot_components
- Create PLS component visualization plots 
- plot_loadings
- Display variable loadings for PLS components 
- plot_scores
- Show component scores and survival relationships 
- plot_validation
- Display cross-validation curves for component selection 
- plot_survival
- Generate risk-stratified survival curves 
- risk_groups
- Number of risk groups for survival stratification 
- confidence_intervals
- Calculate confidence intervals for hazard ratios 
- feature_importance
- Calculate and display variable importance scores 
- prediction_accuracy
- Assess model prediction accuracy using C-index and other metrics 
Value
A results object containing:
| results$todo | a html | ||||
| results$modelSummary | a html | ||||
| results$componentSelection | a table | ||||
| results$modelCoefficients | a table | ||||
| results$variableLoadings | a table | ||||
| results$modelPerformance | a table | ||||
| results$riskStratification | a table | ||||
| results$componentPlot | an image | ||||
| results$loadingsPlot | an image | ||||
| results$scoresPlot | an image | ||||
| results$validationPlot | an image | ||||
| results$survivalPlot | an image | ||||
| results$bootstrapResults | a html | ||||
| results$permutationResults | a html | ||||
| results$clinicalGuidance | a html | ||||
| results$technicalNotes | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$componentSelection$asDF
as.data.frame(results$componentSelection)