Skip to contents

Partial Least Squares Cox regression for high-dimensional survival data. Combines PLS dimensionality reduction with Cox proportional hazards modeling for analysis of genomic, proteomic, and other high-dimensional datasets.

Usage

plscox(
  time,
  status,
  predictors,
  pls_components = 5,
  cross_validation = "k10",
  component_selection = "cv_loglik",
  scaling_method = "standardize",
  pls_algorithm = "nipals",
  max_iterations = 100,
  tolerance = 1e-06,
  bootstrap_validation = FALSE,
  n_bootstrap = 200,
  permutation_test = FALSE,
  n_permutations = 100,
  plot_components = TRUE,
  plot_loadings = TRUE,
  plot_scores = TRUE,
  plot_validation = TRUE,
  plot_survival = TRUE,
  risk_groups = 3,
  confidence_intervals = TRUE,
  feature_importance = TRUE,
  prediction_accuracy = TRUE
)

Arguments

time

.

status

.

predictors

.

pls_components

Number of PLS components to extract

cross_validation

Cross-validation method for component selection

component_selection

Method for selecting optimal number of components

scaling_method

Method for scaling predictor variables

pls_algorithm

Algorithm for PLS computation

max_iterations

Maximum iterations for PLS algorithm convergence

tolerance

Tolerance for algorithm convergence

bootstrap_validation

Perform bootstrap validation of model performance

n_bootstrap

Number of bootstrap replications

permutation_test

Perform permutation test for variable importance

n_permutations

Number of permutations for significance testing

plot_components

Create PLS component visualization plots

plot_loadings

Display variable loadings for PLS components

plot_scores

Show component scores and survival relationships

plot_validation

Display cross-validation curves for component selection

plot_survival

Generate risk-stratified survival curves

risk_groups

Number of risk groups for survival stratification

confidence_intervals

Calculate confidence intervals for hazard ratios

feature_importance

Calculate and display variable importance scores

prediction_accuracy

Assess model prediction accuracy using C-index and other metrics

Value

A results object containing:

results$todoa html
results$modelSummarya html
results$componentSelectiona table
results$modelCoefficientsa table
results$variableLoadingsa table
results$modelPerformancea table
results$riskStratificationa table
results$componentPlotan image
results$loadingsPlotan image
results$scoresPlotan image
results$validationPlotan image
results$survivalPlotan image
results$bootstrapResultsa html
results$permutationResultsa html
results$clinicalGuidancea html
results$technicalNotesa html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$componentSelection$asDF

as.data.frame(results$componentSelection)