Population Health Analytics provides comprehensive cohort-level health status monitoring and epidemiological analysis with population health metrics, risk stratification, geographic health mapping, and predictive health outcome modeling for public health surveillance, population management, and healthcare system optimization through evidence-based population health insights.
Usage
populationhealth(
  data,
  patientID,
  healthOutcomes,
  demographics,
  geographic,
  timeVariable,
  riskFactors,
  healthcareUtilization,
  population_stratification = TRUE,
  risk_stratification = TRUE,
  geographic_analysis = TRUE,
  temporal_trends = TRUE,
  health_disparities = TRUE,
  predictive_modeling = TRUE,
  population_type = "general",
  analysis_scope = "comprehensive",
  geographic_level = "county",
  time_window = 12,
  risk_threshold = 0.7,
  disparity_analysis = TRUE,
  social_determinants = TRUE,
  intervention_analysis = FALSE,
  comparative_analysis = TRUE,
  quality_metrics = TRUE,
  surveillance_system = TRUE,
  outcome_prediction = TRUE,
  resource_allocation = FALSE,
  population_visualization = TRUE,
  geographic_mapping = TRUE,
  trend_visualization = TRUE,
  disparity_plots = TRUE,
  interactive_dashboard = TRUE
)Arguments
- data
- . 
- patientID
- Unique patient identifier for population tracking and analysis 
- healthOutcomes
- Health outcome measures (BMI, blood pressure, lab values, disease indicators) 
- demographics
- Demographic characteristics (age, gender, ethnicity, socioeconomic status) 
- geographic
- Geographic identifiers (zip code, county, region, coordinates) (optional) 
- timeVariable
- Time variables for temporal health trend analysis (optional) 
- riskFactors
- Risk factors (smoking, lifestyle, comorbidities, environmental) (optional) 
- healthcareUtilization
- Healthcare utilization metrics (visits, admissions, procedures) (optional) 
- population_stratification
- Enable population stratification analysis by demographics and risk factors 
- risk_stratification
- Perform population-level risk stratification and early identification 
- geographic_analysis
- Enable geographic health mapping and spatial analysis 
- temporal_trends
- Analyze temporal trends in population health outcomes 
- health_disparities
- Assess health disparities across demographic and socioeconomic groups 
- predictive_modeling
- Enable predictive modeling for population health outcomes 
- population_type
- Type of population for specialized analysis approaches 
- analysis_scope
- Scope of population health analysis 
- geographic_level
- Geographic level for spatial health analysis 
- time_window
- Time window for population health analysis and trending 
- risk_threshold
- Threshold for high-risk population identification 
- disparity_analysis
- Enable advanced health disparity analysis methods 
- Include social determinants of health in analysis 
- intervention_analysis
- Analyze impact of population health interventions 
- comparative_analysis
- Enable comparison across different population segments 
- quality_metrics
- Calculate population health quality and performance indicators 
- surveillance_system
- Enable public health surveillance and monitoring capabilities 
- outcome_prediction
- Predict future population health outcomes and trends 
- resource_allocation
- Analyze healthcare resource allocation and optimization 
- population_visualization
- Create comprehensive population health visualizations 
- geographic_mapping
- Generate geographic health maps and spatial visualizations 
- trend_visualization
- Create temporal trend visualizations for population health 
- disparity_plots
- Generate health disparity and equity visualizations 
- interactive_dashboard
- Create interactive population health dashboards and monitoring tools 
Value
A results object containing:
| results$todo | a html | ||||
| results$populationSummary | a html | ||||
| results$demographicsTable | a table | ||||
| results$healthOutcomesTable | a table | ||||
| results$riskStratificationTable | a table | ||||
| results$geographicAnalysisTable | a table | ||||
| results$temporalTrendsTable | a table | ||||
| results$healthDisparitiesTable | a table | ||||
| results$predictiveModelingTable | a table | ||||
| results$surveillanceTable | a table | ||||
| results$qualityMetricsTable | a table | ||||
| results$interventionAnalysisTable | a table | ||||
| results$resourceAllocationTable | a table | ||||
| results$populationReport | a html | ||||
| results$executiveSummary | a html | ||||
| results$populationDashboard | a html | ||||
| results$populationOverviewPlot | an image | ||||
| results$geographicHealthMap | an image | ||||
| results$temporalTrendsPlot | an image | ||||
| results$riskStratificationPlot | an image | ||||
| results$healthDisparityPlot | an image | ||||
| results$predictiveModelingPlot | an image | ||||
| results$interactivePopulationDashboard | an image | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$demographicsTable$asDF
as.data.frame(results$demographicsTable)
Examples
data('population_health', package='ClinicoPath')
# Basic population health analytics
populationhealth(population_health,
               patientID = 'PatientID',
               healthOutcomes = c('BMI', 'BloodPressure', 'Cholesterol'),
               demographics = c('Age', 'Gender', 'Ethnicity'),
               geographic = 'ZipCode',
               risk_stratification = TRUE,
               predictive_modeling = TRUE)