Population Health Analytics provides comprehensive cohort-level health status monitoring and epidemiological analysis with population health metrics, risk stratification, geographic health mapping, and predictive health outcome modeling for public health surveillance, population management, and healthcare system optimization through evidence-based population health insights.
Usage
populationhealth(
data,
patientID,
healthOutcomes,
demographics,
geographic,
timeVariable,
riskFactors,
healthcareUtilization,
population_stratification = TRUE,
risk_stratification = TRUE,
geographic_analysis = TRUE,
temporal_trends = TRUE,
health_disparities = TRUE,
predictive_modeling = TRUE,
population_type = "general",
analysis_scope = "comprehensive",
geographic_level = "county",
time_window = 12,
risk_threshold = 0.7,
disparity_analysis = TRUE,
social_determinants = TRUE,
intervention_analysis = FALSE,
comparative_analysis = TRUE,
quality_metrics = TRUE,
surveillance_system = TRUE,
outcome_prediction = TRUE,
resource_allocation = FALSE,
population_visualization = TRUE,
geographic_mapping = TRUE,
trend_visualization = TRUE,
disparity_plots = TRUE,
interactive_dashboard = TRUE
)Arguments
- data
.
- patientID
Unique patient identifier for population tracking and analysis
- healthOutcomes
Health outcome measures (BMI, blood pressure, lab values, disease indicators)
- demographics
Demographic characteristics (age, gender, ethnicity, socioeconomic status)
- geographic
Geographic identifiers (zip code, county, region, coordinates) (optional)
- timeVariable
Time variables for temporal health trend analysis (optional)
- riskFactors
Risk factors (smoking, lifestyle, comorbidities, environmental) (optional)
- healthcareUtilization
Healthcare utilization metrics (visits, admissions, procedures) (optional)
- population_stratification
Enable population stratification analysis by demographics and risk factors
- risk_stratification
Perform population-level risk stratification and early identification
- geographic_analysis
Enable geographic health mapping and spatial analysis
- temporal_trends
Analyze temporal trends in population health outcomes
- health_disparities
Assess health disparities across demographic and socioeconomic groups
- predictive_modeling
Enable predictive modeling for population health outcomes
- population_type
Type of population for specialized analysis approaches
- analysis_scope
Scope of population health analysis
- geographic_level
Geographic level for spatial health analysis
- time_window
Time window for population health analysis and trending
- risk_threshold
Threshold for high-risk population identification
- disparity_analysis
Enable advanced health disparity analysis methods
Include social determinants of health in analysis
- intervention_analysis
Analyze impact of population health interventions
- comparative_analysis
Enable comparison across different population segments
- quality_metrics
Calculate population health quality and performance indicators
- surveillance_system
Enable public health surveillance and monitoring capabilities
- outcome_prediction
Predict future population health outcomes and trends
- resource_allocation
Analyze healthcare resource allocation and optimization
- population_visualization
Create comprehensive population health visualizations
- geographic_mapping
Generate geographic health maps and spatial visualizations
- trend_visualization
Create temporal trend visualizations for population health
- disparity_plots
Generate health disparity and equity visualizations
- interactive_dashboard
Create interactive population health dashboards and monitoring tools
Value
A results object containing:
results$todo | a html | ||||
results$populationSummary | a html | ||||
results$demographicsTable | a table | ||||
results$healthOutcomesTable | a table | ||||
results$riskStratificationTable | a table | ||||
results$geographicAnalysisTable | a table | ||||
results$temporalTrendsTable | a table | ||||
results$healthDisparitiesTable | a table | ||||
results$predictiveModelingTable | a table | ||||
results$surveillanceTable | a table | ||||
results$qualityMetricsTable | a table | ||||
results$interventionAnalysisTable | a table | ||||
results$resourceAllocationTable | a table | ||||
results$populationReport | a html | ||||
results$executiveSummary | a html | ||||
results$populationDashboard | a html | ||||
results$populationOverviewPlot | an image | ||||
results$geographicHealthMap | an image | ||||
results$temporalTrendsPlot | an image | ||||
results$riskStratificationPlot | an image | ||||
results$healthDisparityPlot | an image | ||||
results$predictiveModelingPlot | an image | ||||
results$interactivePopulationDashboard | an image |
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$demographicsTable$asDF
as.data.frame(results$demographicsTable)
Examples
data('population_health', package='ClinicoPath')
# Basic population health analytics
populationhealth(population_health,
patientID = 'PatientID',
healthOutcomes = c('BMI', 'BloodPressure', 'Cholesterol'),
demographics = c('Age', 'Gender', 'Ethnicity'),
geographic = 'ZipCode',
risk_stratification = TRUE,
predictive_modeling = TRUE)