Skip to contents

Population Health Analytics provides comprehensive cohort-level health status monitoring and epidemiological analysis with population health metrics, risk stratification, geographic health mapping, and predictive health outcome modeling for public health surveillance, population management, and healthcare system optimization through evidence-based population health insights.

Usage

populationhealth(
  data,
  patientID,
  healthOutcomes,
  demographics,
  geographic,
  timeVariable,
  riskFactors,
  healthcareUtilization,
  population_stratification = TRUE,
  risk_stratification = TRUE,
  geographic_analysis = TRUE,
  temporal_trends = TRUE,
  health_disparities = TRUE,
  predictive_modeling = TRUE,
  population_type = "general",
  analysis_scope = "comprehensive",
  geographic_level = "county",
  time_window = 12,
  risk_threshold = 0.7,
  disparity_analysis = TRUE,
  social_determinants = TRUE,
  intervention_analysis = FALSE,
  comparative_analysis = TRUE,
  quality_metrics = TRUE,
  surveillance_system = TRUE,
  outcome_prediction = TRUE,
  resource_allocation = FALSE,
  population_visualization = TRUE,
  geographic_mapping = TRUE,
  trend_visualization = TRUE,
  disparity_plots = TRUE,
  interactive_dashboard = TRUE
)

Arguments

data

.

patientID

Unique patient identifier for population tracking and analysis

healthOutcomes

Health outcome measures (BMI, blood pressure, lab values, disease indicators)

demographics

Demographic characteristics (age, gender, ethnicity, socioeconomic status)

geographic

Geographic identifiers (zip code, county, region, coordinates) (optional)

timeVariable

Time variables for temporal health trend analysis (optional)

riskFactors

Risk factors (smoking, lifestyle, comorbidities, environmental) (optional)

healthcareUtilization

Healthcare utilization metrics (visits, admissions, procedures) (optional)

population_stratification

Enable population stratification analysis by demographics and risk factors

risk_stratification

Perform population-level risk stratification and early identification

geographic_analysis

Enable geographic health mapping and spatial analysis

Analyze temporal trends in population health outcomes

health_disparities

Assess health disparities across demographic and socioeconomic groups

predictive_modeling

Enable predictive modeling for population health outcomes

population_type

Type of population for specialized analysis approaches

analysis_scope

Scope of population health analysis

geographic_level

Geographic level for spatial health analysis

time_window

Time window for population health analysis and trending

risk_threshold

Threshold for high-risk population identification

disparity_analysis

Enable advanced health disparity analysis methods

social_determinants

Include social determinants of health in analysis

intervention_analysis

Analyze impact of population health interventions

comparative_analysis

Enable comparison across different population segments

quality_metrics

Calculate population health quality and performance indicators

surveillance_system

Enable public health surveillance and monitoring capabilities

outcome_prediction

Predict future population health outcomes and trends

resource_allocation

Analyze healthcare resource allocation and optimization

population_visualization

Create comprehensive population health visualizations

geographic_mapping

Generate geographic health maps and spatial visualizations

trend_visualization

Create temporal trend visualizations for population health

disparity_plots

Generate health disparity and equity visualizations

interactive_dashboard

Create interactive population health dashboards and monitoring tools

Value

A results object containing:

results$todoa html
results$populationSummarya html
results$demographicsTablea table
results$healthOutcomesTablea table
results$riskStratificationTablea table
results$geographicAnalysisTablea table
results$temporalTrendsTablea table
results$healthDisparitiesTablea table
results$predictiveModelingTablea table
results$surveillanceTablea table
results$qualityMetricsTablea table
results$interventionAnalysisTablea table
results$resourceAllocationTablea table
results$populationReporta html
results$executiveSummarya html
results$populationDashboarda html
results$populationOverviewPlotan image
results$geographicHealthMapan image
results$temporalTrendsPlotan image
results$riskStratificationPlotan image
results$healthDisparityPlotan image
results$predictiveModelingPlotan image
results$interactivePopulationDashboardan image

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$demographicsTable$asDF

as.data.frame(results$demographicsTable)

Examples

data('population_health', package='ClinicoPath')

# Basic population health analytics
populationhealth(population_health,
               patientID = 'PatientID',
               healthOutcomes = c('BMI', 'BloodPressure', 'Cholesterol'),
               demographics = c('Age', 'Gender', 'Ethnicity'),
               geographic = 'ZipCode',
               risk_stratification = TRUE,
               predictive_modeling = TRUE)