Principal Component Cox models address the challenges of high-dimensional survival data by using principal component analysis (PCA) to reduce dimensionality before fitting Cox regression models. This approach is particularly useful when the number of covariates is large relative to sample size, helping to avoid overfitting while retaining important patterns in the data. The method supports various PCA approaches including standard PCA, sparse PCA, and supervised PCA for survival data.
Usage
principalcox(
  data,
  elapsedtime,
  outcome,
  highdim_vars,
  clinical_vars,
  outcomeLevel = "1",
  pca_method = "standard",
  n_components = 5,
  variance_threshold = 0.95,
  component_selection = "fixed_number",
  scaling_method = "standardize",
  sparse_parameter = 0.1,
  cross_validation = 5,
  confidence_level = 0.95,
  show_pca_summary = TRUE,
  show_component_loadings = TRUE,
  show_cox_results = TRUE,
  show_variable_importance = FALSE,
  show_model_comparison = FALSE,
  scree_plot = TRUE,
  biplot = FALSE,
  loading_plot = TRUE,
  survival_plot = TRUE,
  showSummaries = TRUE,
  showExplanations = TRUE
)Arguments
- data
- the data as a data frame 
- elapsedtime
- Time to event or censoring 
- outcome
- Event indicator (1 = event, 0 = censored) 
- highdim_vars
- High-dimensional variables for principal component analysis 
- clinical_vars
- Clinical variables to include alongside principal components 
- outcomeLevel
- Level indicating event occurrence 
- pca_method
- Method for principal component analysis 
- n_components
- Number of principal components to retain 
- variance_threshold
- Cumulative variance threshold for automatic component selection 
- component_selection
- Method for selecting the number of components 
- scaling_method
- Method for scaling variables before PCA 
- sparse_parameter
- Sparsity parameter for sparse PCA (proportion of non-zero loadings) 
- cross_validation
- Number of folds for cross-validation component selection 
- confidence_level
- Confidence level for confidence intervals 
- show_pca_summary
- Display PCA summary statistics 
- show_component_loadings
- Display principal component loadings 
- show_cox_results
- Display Cox regression results for principal components 
- show_variable_importance
- Display importance of original variables in components 
- show_model_comparison
- Compare different PCA approaches and component numbers 
- scree_plot
- Display scree plot for component selection 
- biplot
- Display PCA biplot 
- loading_plot
- Display component loading plots 
- survival_plot
- Display survival curves stratified by principal component scores 
- showSummaries
- Show comprehensive analysis summaries 
- showExplanations
- Show detailed methodology explanations 
Value
A results object containing:
| results$todo | a html | ||||
| results$pcaSummary | a table | ||||
| results$componentLoadings | a table | ||||
| results$coxResults | a table | ||||
| results$variableImportance | a table | ||||
| results$modelComparison | a table | ||||
| results$componentSelection | a table | ||||
| results$scalingSummary | a table | ||||
| results$methodologyExplanation | a html | ||||
| results$analysisSummary | a html | ||||
| results$screePlot | an image | ||||
| results$biplot | an image | ||||
| results$loadingPlot | an image | ||||
| results$survivalPlot | an image | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$pcaSummary$asDF
as.data.frame(results$pcaSummary)