Skip to contents

Specialized progression-free survival (PFS) analysis designed for oncology research. Provides comprehensive analysis of time-to-progression endpoints with competing risks considerations, landmark analysis, and treatment effect estimation. Includes analysis of progression patterns, censoring mechanisms, and clinical interpretation specific to cancer clinical trials and observational studies.

Usage

progressionsurvival(
  data,
  time_var,
  progression_var,
  death_var,
  treatment_var,
  stratification_vars,
  patient_id,
  baseline_vars,
  analysis_type = "standard_pfs",
  progression_definition = "recist",
  censoring_mechanism = "administrative",
  survival_method = "kaplan_meier",
  comparison_test = "logrank",
  regression_model = "cox_ph",
  landmark_times = "6,12,18,24",
  rmst_tau = 24,
  confidence_level = 0.95,
  alpha_spending = "obrien_fleming",
  kaplan_meier_curves = TRUE,
  cumulative_incidence = FALSE,
  landmark_analysis_plot = FALSE,
  progression_patterns = FALSE,
  treatment_effect_estimation = TRUE,
  subgroup_analysis = FALSE,
  biomarker_interaction = FALSE,
  sensitivity_analysis = FALSE,
  interim_monitoring = FALSE,
  progression_velocity = FALSE,
  clinical_significance = TRUE,
  regulatory_endpoints = FALSE,
  health_economic_outcomes = FALSE,
  plot_theme = "publication",
  risk_tables = TRUE,
  median_survival_lines = TRUE,
  confidence_bands = TRUE,
  generate_report = FALSE,
  regulatory_tables = FALSE,
  consort_diagram = FALSE
)

Arguments

data

the data as a data frame

time_var

Time to progression or censoring (PFS time)

progression_var

Progression indicator (1=progression, 0=censored)

death_var

Death indicator (1=death, 0=alive) for competing risks analysis

treatment_var

Treatment or intervention variable

stratification_vars

Variables for stratified analysis (e.g., stage, histology, biomarkers)

patient_id

Patient identifier for longitudinal data

baseline_vars

Baseline covariates for adjusted analysis

analysis_type

Type of progression-free survival analysis

progression_definition

Definition of disease progression used

censoring_mechanism

Primary censoring mechanism in the data

survival_method

Method for survival function estimation

comparison_test

Statistical test for group comparisons

regression_model

Regression model for treatment effect estimation

landmark_times

Landmark time points in months (comma-separated)

rmst_tau

Restriction time for RMST analysis (months)

confidence_level

Confidence level for intervals

alpha_spending

Alpha spending function for interim analyses

kaplan_meier_curves

Generate Kaplan-Meier survival curves

cumulative_incidence

Calculate cumulative incidence functions (competing risks)

landmark_analysis_plot

Generate landmark analysis visualizations

progression_patterns

Analyze patterns and timing of disease progression

treatment_effect_estimation

Estimate treatment effects with confidence intervals

subgroup_analysis

Perform pre-specified subgroup analyses

biomarker_interaction

Test for biomarker-treatment interactions

sensitivity_analysis

Perform sensitivity analyses for assumptions

interim_monitoring

Analysis for interim monitoring and early stopping

progression_velocity

Analyze velocity and acceleration of disease progression

clinical_significance

Assess clinical significance of findings

regulatory_endpoints

Analysis aligned with regulatory requirements (FDA/EMA)

health_economic_outcomes

Calculate health economic outcome measures

plot_theme

Visual theme for plots

risk_tables

Include risk tables below survival curves

median_survival_lines

Add median survival reference lines

confidence_bands

Show confidence bands on survival curves

generate_report

Generate comprehensive clinical analysis report

regulatory_tables

Generate regulatory submission-ready tables

consort_diagram

Generate CONSORT-style patient flow diagram

Value

A results object containing:

results$instructionsa html
results$pfs_summarya table
results$survival_estimatesa table
results$treatment_effectsa table
results$competing_risks_analysisa table
results$landmark_resultsa table
results$subgroup_analysis_tablea table
results$progression_patternsa table
results$sensitivity_analysis_tablea table
results$biomarker_interaction_tablea table
results$interim_monitoring_tablea table
results$clinical_significance_tablea table
results$km_plotan image
results$cif_plotan image
results$landmark_plotan image
results$forest_plotan image
results$progression_pattern_plotan image
results$consort_flowan image
results$clinical_interpretationa html
results$regulatory_summarya html

Tables can be converted to data frames with asDF or as.data.frame. For example:

results$pfs_summary$asDF

as.data.frame(results$pfs_summary)

Examples

data('cancer_trial')

progressionsurvival(
    data = cancer_trial,
    time_var = "pfs_time",
    progression_var = "progression",
    death_var = "death",
    treatment_var = "treatment",
    stratification_vars = c("stage", "histology")
)