Specialized progression-free survival (PFS) analysis designed for oncology research. Provides comprehensive analysis of time-to-progression endpoints with competing risks considerations, landmark analysis, and treatment effect estimation. Includes analysis of progression patterns, censoring mechanisms, and clinical interpretation specific to cancer clinical trials and observational studies.
Usage
progressionsurvival(
  data,
  time_var,
  progression_var,
  death_var,
  treatment_var,
  stratification_vars,
  patient_id,
  baseline_vars,
  analysis_type = "standard_pfs",
  progression_definition = "recist",
  censoring_mechanism = "administrative",
  survival_method = "kaplan_meier",
  comparison_test = "logrank",
  regression_model = "cox_ph",
  landmark_times = "6,12,18,24",
  rmst_tau = 24,
  confidence_level = 0.95,
  alpha_spending = "obrien_fleming",
  kaplan_meier_curves = TRUE,
  cumulative_incidence = FALSE,
  landmark_analysis_plot = FALSE,
  progression_patterns = FALSE,
  treatment_effect_estimation = TRUE,
  subgroup_analysis = FALSE,
  biomarker_interaction = FALSE,
  sensitivity_analysis = FALSE,
  interim_monitoring = FALSE,
  progression_velocity = FALSE,
  clinical_significance = TRUE,
  regulatory_endpoints = FALSE,
  health_economic_outcomes = FALSE,
  plot_theme = "publication",
  risk_tables = TRUE,
  median_survival_lines = TRUE,
  confidence_bands = TRUE,
  generate_report = FALSE,
  regulatory_tables = FALSE,
  consort_diagram = FALSE
)Arguments
- data
- the data as a data frame 
- time_var
- Time to progression or censoring (PFS time) 
- progression_var
- Progression indicator (1=progression, 0=censored) 
- death_var
- Death indicator (1=death, 0=alive) for competing risks analysis 
- treatment_var
- Treatment or intervention variable 
- stratification_vars
- Variables for stratified analysis (e.g., stage, histology, biomarkers) 
- patient_id
- Patient identifier for longitudinal data 
- baseline_vars
- Baseline covariates for adjusted analysis 
- analysis_type
- Type of progression-free survival analysis 
- progression_definition
- Definition of disease progression used 
- censoring_mechanism
- Primary censoring mechanism in the data 
- survival_method
- Method for survival function estimation 
- comparison_test
- Statistical test for group comparisons 
- regression_model
- Regression model for treatment effect estimation 
- landmark_times
- Landmark time points in months (comma-separated) 
- rmst_tau
- Restriction time for RMST analysis (months) 
- confidence_level
- Confidence level for intervals 
- alpha_spending
- Alpha spending function for interim analyses 
- kaplan_meier_curves
- Generate Kaplan-Meier survival curves 
- cumulative_incidence
- Calculate cumulative incidence functions (competing risks) 
- landmark_analysis_plot
- Generate landmark analysis visualizations 
- progression_patterns
- Analyze patterns and timing of disease progression 
- treatment_effect_estimation
- Estimate treatment effects with confidence intervals 
- subgroup_analysis
- Perform pre-specified subgroup analyses 
- biomarker_interaction
- Test for biomarker-treatment interactions 
- sensitivity_analysis
- Perform sensitivity analyses for assumptions 
- interim_monitoring
- Analysis for interim monitoring and early stopping 
- progression_velocity
- Analyze velocity and acceleration of disease progression 
- clinical_significance
- Assess clinical significance of findings 
- regulatory_endpoints
- Analysis aligned with regulatory requirements (FDA/EMA) 
- health_economic_outcomes
- Calculate health economic outcome measures 
- plot_theme
- Visual theme for plots 
- risk_tables
- Include risk tables below survival curves 
- median_survival_lines
- Add median survival reference lines 
- confidence_bands
- Show confidence bands on survival curves 
- generate_report
- Generate comprehensive clinical analysis report 
- regulatory_tables
- Generate regulatory submission-ready tables 
- consort_diagram
- Generate CONSORT-style patient flow diagram 
Value
A results object containing:
| results$instructions | a html | ||||
| results$pfs_summary | a table | ||||
| results$survival_estimates | a table | ||||
| results$treatment_effects | a table | ||||
| results$competing_risks_analysis | a table | ||||
| results$landmark_results | a table | ||||
| results$subgroup_analysis_table | a table | ||||
| results$progression_patterns | a table | ||||
| results$sensitivity_analysis_table | a table | ||||
| results$biomarker_interaction_table | a table | ||||
| results$interim_monitoring_table | a table | ||||
| results$clinical_significance_table | a table | ||||
| results$km_plot | an image | ||||
| results$cif_plot | an image | ||||
| results$landmark_plot | an image | ||||
| results$forest_plot | an image | ||||
| results$progression_pattern_plot | an image | ||||
| results$consort_flow | an image | ||||
| results$clinical_interpretation | a html | ||||
| results$regulatory_summary | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$pfs_summary$asDF
as.data.frame(results$pfs_summary)