Pseudo-observations methods for direct modeling of survival probabilities and restricted mean survival time (RMST). Enables regression analysis of survival probability at specific time points and RMST with standard statistical methods.
Usage
pseudosurvival(
  time_var,
  status_var,
  covariates = NULL,
  stratification_vars = NULL,
  analysis_type = "survival_probability",
  time_points = "12,24,36,60",
  tau_rmst = 60,
  quantile_probs = "0.25,0.5,0.75",
  jackknife_method = "standard",
  regression_method = "ols",
  cluster_var = NULL,
  confidence_level = 0.95,
  bootstrap_samples = 500,
  robust_se = FALSE,
  model_diagnostics = TRUE,
  prediction_intervals = FALSE,
  survival_curves = TRUE,
  rmst_comparison = TRUE,
  sensitivity_analysis = FALSE,
  competing_risks = FALSE,
  weighted_analysis = FALSE
)Arguments
- time_var
- Survival time variable 
- status_var
- Event status indicator variable 
- covariates
- Covariates to include in the pseudo-regression model 
- stratification_vars
- Variables for stratifying the analysis 
- analysis_type
- Analysis approach using pseudo-observations 
- time_points
- Time points for pseudo-observation calculation 
- tau_rmst
- Maximum follow-up time for RMST analysis 
- quantile_probs
- Survival quantiles for pseudo-observation analysis 
- jackknife_method
- Method for computing pseudo-observations 
- regression_method
- Statistical method for pseudo-observation regression 
- cluster_var
- Variable defining clusters for GEE or cluster jackknife 
- confidence_level
- Confidence level for parameter estimates 
- bootstrap_samples
- Bootstrap resamples for standard error estimation 
- robust_se
- Whether to compute robust standard errors 
- model_diagnostics
- Whether to include model diagnostics 
- prediction_intervals
- Whether to compute prediction intervals 
- survival_curves
- Whether to plot survival probability curves 
- rmst_comparison
- Whether to perform RMST group comparisons 
- sensitivity_analysis
- Whether to perform sensitivity analysis 
- competing_risks
- Whether to include competing risks modeling 
- weighted_analysis
- Whether to apply inverse probability weighting 
Value
A results object containing:
| results$instructions | a html | ||||
| results$pseudo_summary | a html | ||||
| results$regression_results | a html | ||||
| results$covariate_effects | a html | ||||
| results$rmst_analysis | a html | ||||
| results$survival_probability_results | a html | ||||
| results$group_comparisons | a html | ||||
| results$model_diagnostics_summary | a html | ||||
| results$sensitivity_results | a html | ||||
| results$pseudo_observations_plot | an image | ||||
| results$regression_plots | an image | ||||
| results$survival_curves_plot | an image | ||||
| results$rmst_comparison_plot | an image | ||||
| results$diagnostics_plots | an image | ||||
| results$sensitivity_plot | an image | 
Examples
# Example: RMST regression with covariates
pseudosurvival(
    data = cancer_data,
    time_var = survival_time,
    status_var = death_status,
    covariates = c("age", "stage", "treatment"),
    analysis_type = "rmst_regression",
    tau_rmst = 60
)