Skip to contents

Pseudo-observations methods for direct modeling of survival probabilities and restricted mean survival time (RMST). Enables regression analysis of survival probability at specific time points and RMST with standard statistical methods.

Usage

pseudosurvival(
  time_var,
  status_var,
  covariates = NULL,
  stratification_vars = NULL,
  analysis_type = "survival_probability",
  time_points = "12,24,36,60",
  tau_rmst = 60,
  quantile_probs = "0.25,0.5,0.75",
  jackknife_method = "standard",
  regression_method = "ols",
  cluster_var = NULL,
  confidence_level = 0.95,
  bootstrap_samples = 500,
  robust_se = FALSE,
  model_diagnostics = TRUE,
  prediction_intervals = FALSE,
  survival_curves = TRUE,
  rmst_comparison = TRUE,
  sensitivity_analysis = FALSE,
  competing_risks = FALSE,
  weighted_analysis = FALSE
)

Arguments

time_var

Survival time variable

status_var

Event status indicator variable

covariates

Covariates to include in the pseudo-regression model

stratification_vars

Variables for stratifying the analysis

analysis_type

Analysis approach using pseudo-observations

time_points

Time points for pseudo-observation calculation

tau_rmst

Maximum follow-up time for RMST analysis

quantile_probs

Survival quantiles for pseudo-observation analysis

jackknife_method

Method for computing pseudo-observations

regression_method

Statistical method for pseudo-observation regression

cluster_var

Variable defining clusters for GEE or cluster jackknife

confidence_level

Confidence level for parameter estimates

bootstrap_samples

Bootstrap resamples for standard error estimation

robust_se

Whether to compute robust standard errors

model_diagnostics

Whether to include model diagnostics

prediction_intervals

Whether to compute prediction intervals

survival_curves

Whether to plot survival probability curves

rmst_comparison

Whether to perform RMST group comparisons

sensitivity_analysis

Whether to perform sensitivity analysis

competing_risks

Whether to include competing risks modeling

weighted_analysis

Whether to apply inverse probability weighting

Value

A results object containing:

results$instructionsa html
results$pseudo_summarya html
results$regression_resultsa html
results$covariate_effectsa html
results$rmst_analysisa html
results$survival_probability_resultsa html
results$group_comparisonsa html
results$model_diagnostics_summarya html
results$sensitivity_resultsa html
results$pseudo_observations_plotan image
results$regression_plotsan image
results$survival_curves_plotan image
results$rmst_comparison_plotan image
results$diagnostics_plotsan image
results$sensitivity_plotan image

Examples

# Example: RMST regression with covariates
pseudosurvival(
    data = cancer_data,
    time_var = survival_time,
    status_var = death_status,
    covariates = c("age", "stage", "treatment"),
    analysis_type = "rmst_regression",
    tau_rmst = 60
)