Implements rank-based accelerated failure time (AFT) models using generalized estimating equations (GEE) for survival data analysis. This approach provides robust estimation when proportional hazards assumptions are violated, offering distribution-free methods for modeling survival times with emphasis on median survival relationships and time acceleration effects in clinical research applications.
Usage
raftgee(
  data,
  elapsedtime,
  outcome,
  covariates,
  outcomeLevel = "1",
  rank_method = "logrank",
  correlation_structure = "independence",
  cluster_variable,
  confidence_level = 0.95,
  max_iterations = 100,
  convergence_tolerance = 1e-06,
  weights_variable,
  robust_variance = TRUE,
  bootstrap_samples = 0,
  show_model_summary = TRUE,
  show_coefficients = TRUE,
  show_diagnostics = TRUE,
  show_residual_plots = TRUE,
  show_qq_plots = TRUE,
  show_survival_plots = TRUE,
  show_acceleration_plots = TRUE,
  show_comparison_plots = TRUE,
  showSummaries = FALSE,
  showExplanations = FALSE
)Arguments
- data
- the data as a data frame 
- elapsedtime
- Survival time or follow-up duration variable 
- outcome
- Event indicator variable (0/1, FALSE/TRUE, or factor) 
- covariates
- Covariate variables for AFT modeling 
- outcomeLevel
- Level of outcome variable indicating event occurrence 
- rank_method
- Rank-based test method for AFT estimation 
- correlation_structure
- Working correlation structure for GEE 
- cluster_variable
- Variable defining clusters for correlated observations 
- confidence_level
- Confidence level for parameter estimates 
- max_iterations
- Maximum number of iterations for GEE algorithm 
- convergence_tolerance
- Convergence tolerance for parameter estimation 
- weights_variable
- Optional weights variable for observations 
- robust_variance
- Use robust sandwich variance estimator 
- bootstrap_samples
- Number of bootstrap samples for variance estimation (0 = no bootstrap) 
- show_model_summary
- Display comprehensive AFT model summary 
- show_coefficients
- Display AFT model coefficients table 
- show_diagnostics
- Display model diagnostic statistics 
- show_residual_plots
- Display residual diagnostic plots 
- show_qq_plots
- Display quantile-quantile plots 
- show_survival_plots
- Display AFT-based survival curves 
- show_acceleration_plots
- Display time acceleration factor plots 
- show_comparison_plots
- Display comparison with Cox models 
- showSummaries
- Generate natural language summaries of the analysis results 
- showExplanations
- Show detailed explanations of the methodology and interpretation 
Value
A results object containing:
| results$modelSummary | a table | ||||
| results$coefficients | a table | ||||
| results$diagnostics | a table | ||||
| results$geeDiagnostics | a table | ||||
| results$convergenceInfo | a table | ||||
| results$modelComparison | a table | ||||
| results$residualPlots | an image | ||||
| results$qqPlots | an image | ||||
| results$survivalPlots | an image | ||||
| results$accelerationPlots | an image | ||||
| results$comparisonPlots | an image | ||||
| results$correlationPlots | an image | ||||
| results$summaryTable | a html | ||||
| results$methodExplanation | a html | 
Tables can be converted to data frames with asDF or as.data.frame. For example:
results$modelSummary$asDF
as.data.frame(results$modelSummary)